Utility of Live Tension Measurements

TUFF DOS

T: Tension

U: Under

F: Flight

F: Forces

D: Drag

O: Oscillations

S: Shear-Winds

TUFF DOS Payload

Flight NS-111 TUFF DOS Configuration

Design Overview

TUFF DOS internals

Section-view of TUFF DOS

Tension-Drag Relationship Partial FBD

Tension w/ Altitude Overlain and Averages Drawn (Flight NS-110)

Tension-Drag Relationship Partial FBD

$$\text{Xa:} \left| D_{Ascent} \right| = T_{Ascent} - W$$

$$Xb: \left| D_{Descent} \right| = W - T_{Descent}$$

Drag Calculation

$$\frac{\left|D_{Ascent}\right|}{\left|D_{Descent}\right|} = \frac{V_{Ascent}^{2}}{V_{Descent}^{2}}$$

Drag Relationship Test (V is known)

$$D = C_d \frac{\rho V^2}{2} A$$

Drag Equation

Tension w/ Altitude Overlaid and Averages Drawn (Flight NS-110)

Rolling Average (100s) of Drag Throughout Flight NS-110

Drag Applications

Balloon Inflation Process

Flight NS-111 TUFF DOS Configuration

Oscillations

FFT of Representative 60 Second Sample of Payload Oscillation Rate

Oscillations

Swinging Sample from NS-111 (Cubesat similar w/out TUFF)

Oscillations Applications

Video Stabilization Application
SOURCE: Phys.org

Payload Swinging Application

Shear-Winds Applications

The changing jet stream

Ground Tracking Application SOURCE: Study.com

Jet Stream Application SOURCE: Electroverse

Challenges - Flight Safety

TUFF Tie-On Slackline System

Challenges - Calibration Accuracy

TUFF Calibration Rig

Challenges - Human Error

Section-view of TUFF DOS

Conclusions

- Promising results
- Drag, oscillations, shear-winds have been detected
- Several ballooning applications
- More research is needed, expert opinions welcome

TUFF DOS Payload

Acknowledgements

University of Maryland Nearspace Club Balloon Payload Program

Maryland Space Grant Consortium

Special Thanks:

- Dr. Mary Bowden
- Dr. Alison Flatau
- Madelaine Lebetkin and Alexis Burris
- Dr. Thomas Snitch

We couldn't have done it without you!

Team:

Jeremy Kuznetsov

Jaxon Lee

Daniel Grammer

Oliver Villegas

Owen Moran

Malcolm Maas