Planetary Boundary Layer Height Determination and Lapse Rate Analysis Based on Atmospheric Conditions Surrounding the 2024 Total Solar Eclipse

Konstantine Geranios,¹ Caeley Hodges,¹ Alexander D. Chambers,¹ Matthew T. Bernards,¹

¹University of Idaho, Moscow, ID

Introduction

The local planetary boundary layer (PBL) is a critical component of atmospheric research but the determined height is highly subjective depending on what method is used to determine it. A study was conducted analyzing 30 hours of radiosonde flights surrounding a total solar eclipse to compare atmospheric conditions via commonly used methods, and to determine if the total solar eclipse had a significant impact on PBL and lapse rate development.

Field Campaign

- A 30-hour field campaign was conducted in North Springfield, Pennsylvania.
- Graw radiosondes were launched using weather balloons every hour on the hour.
- The flight profiles were evaluated using three analytical methods for determining the PBL height.

SkewT-LogP Diagrams for PBL

- Visual analysis of multiple SkewT-LogP diagrams is a lengthy process.
- Atmospheric conditions impact accuracy of analytical methods.
- Trends identified from 48 radiosonde profiles gathered in 2020.
- Algorithm generated to use specific PBL method based on atmospheric conditions.

PBL Analytical Methods

Atmospheric Conditions			PBL Method
Nocturnal Layer	Stability	Saturation	Chosen Method
Present	Stable	Unsaturated	PT
	Unstable	Unsaturated	RI
	Stable	High Saturation (RH>70%)	VPT
Other Combinations General Trend			RI

PBL Results

Calculated PBL Heights for Eclipse Campaign

- A total solar eclipse resembles the normal diurnal cycle on a shorter time-scale.
- The planetary boundary layer height is expected to drop during an eclipse and behave similarly to a nocturnal boundary layer.

Atmospheric Conditions - LUFFT

- There was cloud cover prior to totality and following fourth contact.
- Atmospheric conditions during the length of the eclipse were as follows: lower temperatures, decreased relative humidity, minimal wind, no solar irradiance.

Lapse Rate Result

- Lapse rate is the slope of the temperature gradient.
- Expected to become less negative during an eclipse.

Conclusions

- A distinct drop in the PBL during the eclipse was seen and it stayed low.
- An increase in the positivity of the lapse rate was observed.
- The eclipse had the expected impacts on the lapse rate and PBL.

Student and travel support provided by the Idaho Space Grant Consortium: Grant #80NSSC20M0108.

Travel and research support provided by NASA: Grant #80NSSC22M0003.

