Skip to main content
Merchandising/Marketing/Retailing: Management

Fashion Printing Technology Diffusion: Big Data Analytics

Authors
  • Yanan Yu (North Carolina State University)
  • Lisa Parillo-Chapman (North Carolina State University)
  • Marguerite Moore (North Carolina State University)

Abstract

Digital printing technology (DPT) represents a core innovation that is currently revolutionizing the global decorated apparel market by automating printing process, facilitating customization, and reducing energy and production lead time. However, the fundamental understanding of the emerging DPT market remains unexplored due to its novelty. This study aims to identify DPT diffusion patterns over the past decade in the U.S. market and establish a predictive user profile using social media based data analytics along with data mining and traditional statistical modeling. The visualized DPT diffusion pattern depicts an s-shaped curve, which highlight the propensity that as new technology evolves over time. Additionally, the outcome profile suggests that likely DPT adopters reside in locations that reflect higher levels of education (bachelor’s degrees or higher), relatively young populations (i.e., between 19-34 years of age), proportionately higher incomes generated from art and design occupations, but lower levels of household incomes.

Keywords: technology adoption, logistic regression, diffusion of innovations, big data analytics, Digital printing technology

How to Cite:

Yu, Y., Parillo-Chapman, L. & Moore, M., (2020) “Fashion Printing Technology Diffusion: Big Data Analytics”, International Textile and Apparel Association Annual Conference Proceedings 77(1). doi: https://doi.org/10.31274/itaa.11718

Downloads:
Download PDF
View PDF

466 Views

127 Downloads

Published on
2020-12-28

Peer Reviewed