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Abstract: A consumer trend toward convenient, minimally processed meat products has exerted tremendous pressure on
meat processors to ensure the safety of meat and meat products without compromising product quality and the meeting of
consumer demands. This has led to challenges in developing and implementing novel processing technologies as the use of
newer technologies may affect consumer choices and opinions of meat and meat products. Novel technologies adopted by
the meat industry for controlling foodborne pathogens of significant public health implications, gaps in the technologies,
and the need for scaling up technologies that have been proven to be successful in research settings or at the pilot scale will
be discussed. Novel processing technologies in the meat industry warrant microbiological validation prior to becoming
commercially viable options and enacting infrastructural changes. This review presents the advantages and shortcomings
of such technologies and provides an overview of technologies that can be successfully implemented and streamlined in
existing processing environments.
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Introduction

Over the past 2 decades, there has been an increased
demand for convenient yet minimally processed meat
and meat products. With this expectation from the
consumers, there is an ever increasing responsibility
for meat processors to manufacture safe meat and
meat products without compromising quality.
Ensuring microbial safety and quality of meat and
meat products is an ongoing challenge as meat pro-
vides an ideal medium for the growth of microorgan-
isms. Additionally, the highly perishable nature of
meat requires new and innovative technologies to
constantly be developed and applied to destroy
and/or prevent growth of pathogenic and spoilage

microorganisms (Troy et al., 2016). According to
Bruhn (2007), increasing awareness among consum-
ers has shifted their focus toward convenience and
safety without compromises in the health-enhancing
properties of their desired foods. As a result of this,
research over the past decade has focused on the
invention and application of newer processing tech-
nologies (Raouche et al., 2011). In the current times,
in which social media and access to science-based
knowledge is readily available, enhancing consumer
awareness about newer processing technologies,
including benefits and drawbacks, is critical to assist
in the decision-making process to purchase meat and
meat products. Traditional thermal pasteurization
technologies have been widely used in the meat
industry; however, several reports suggest a negative
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effect on sensory characteristics, flavor, and nutritional
content of food. Therefore, nonthermal processing
technologies have gained widespread attention
(Farkas, 2016), and some of the new and widely used
technologies include, but are not limited to, high pres-
sure, pulsed electric field (PEF), pulsed light, electron
beam, plasma, and intelligent andmodified atmosphere
packaging. Published literature on the previously men-
tioned technologies is extensive and is active world-
wide, although factors such as cost, worker safety,
floorspace and throughput challenges, public percep-
tion, etc. can limit their commercial applications.
This review summarizes recent developments in tech-
nologies to enhance safety of meat and meat products
with a focus on implementation of laboratory-scale
technologies to commercial domains.

Microbiological Safety of Meat and
Meat Products

Meat and meat products represent a steadily grow-
ing sector of the global food production (FAO, 2019).
Asmeat is one of the food commoditiesmost commonly
implicated in foodborne outbreaks, the disease burden
associated with consumption of contaminated meat
and meat products remains substantial (CDC, 2019).
Themost prevalent causative agents of meat-related out-
breaks are Salmonella, Shiga-toxigenic Escherichia
coli, Listeria monocytogenes, and to a lesser extent
Staphylococcus aureus, Bacillus cereus, Clostridium
perfringens, C. botulinum, and Trichinella spiralis in
pork (Omer et al., 2018; CDC, 2019). There are several
regulations to prevent contamination of the meat supply
with foodborne pathogens and subsequently minimize
the risk to the consumers. For example, in 2011, the
United States Department of Agriculture’s (USDA)
Food Safety and Inspection Service (FSIS), under the
Federal Meat Inspection Act, declared that E. coli
O157:H7 and serogroups O26, O45, O103, O111,
O121, and O145 were considered adulterants in raw
nonintact beef and intact beef products intended for non-
intact use (76 FR 58157) (Federal Register, 2011).
Similarly, in 2003, a zero-tolerance rule for L. monocy-
togenes in post-lethality exposed ready-to-eat (RTE)
meat and poultry products was implemented (68 FR
34224) (Federal Register, 2003).

Meat animals naturally carry significant microbial
load on their skin, hair, feet, and most importantly, in
their gastrointestinal tract. Among them are foodborne
pathogens that can be transferred to the meat process-
ing facilities upon slaughter (Gill, 2005). Cattle and

other ruminants are frequently colonized with E. coli
O157:H7 and can shed high loads of the pathogen in
their feces without exhibiting any signs of disease
(Bell, 1997). Consequently, more than half of the
reported E. coli O157:H7 outbreaks are linked to beef
and beef products (Callaway et al., 2009) although,
increasingly, contaminated fresh produce is being
linked to this pathogen and consequently the outbreaks
(CDC, 2019). In a recent survey, Omer et al. (2018)
reported that from 1980 to 2015, the meat categories
most frequently associated with outbreaks of E. coli
O157:H7 and other non-O157 serotypes were fresh
processed meats and raw-cured fermented sausages.
The prevalence of E. coli in cattle may vary, and
Elder et al. (2000) reported E. coliO157 incidence lev-
els of 28% and 11% on feces and hides, respectively.
Most importantly, this study showed a correlation in
E. coli O157 prevalence between pre-slaughter and
processing, with incidence levels of 43% at pre-
evisceration and 2% at post-chill. In a recent study,
the incidence of non-O157 enterohaemorrhagic E. coli
on cattle hides was reported at 79% (630/800) of the
hide samples contaminated with at least one serogroup
of enterohaemorrhagic E. coli (Schneider et al., 2018).

Salmonella can also colonize the intestinal tract of
cattle, swine, and poultry (Stevens et al., 2009). There
are numerous disease-causing serovars of Salmonella
enterica, but Salmonella enterica serovar Typhimurium
is the most common serovar implicated in meat-related
outbreaks, with raw-cured fermented sausages as a major
food vehicle for infection (Omer et al., 2018). It is diffi-
cult to estimate average prevalence of Salmonella in meat
products, as they vary greatly based on geographical
regions and production practices (Carrasco et al.,
2012). Fecal prevalence of Salmonella on beef cattle
may range from 2% to 9% but can be isolated at higher
rates, up to 97%, from the hide (Barkocy-Gallagher et al.,
2003). Post processing and at retail, the prevalence is
much lower, ranging from 2% to 7% for some products
(Bosilevac et al., 2009). Similar trends are also reported
for pork products, with reported Salmonella levels
decreasing to 4% after chilling of pork carcasses
(Schmidt et al., 2012) and to undetectable levels at retail
(Sanchez-Maldonado et al., 2017).

Among the confirmed outbreaks related to con-
sumption of meat products caused by etiologic agents
other than Salmonella and E. coli, outbreaks caused
by L. monocytogenes are of significant importance.
L. monocytogenes is a pathogen of concern in RTE
meat products due to its ubiquitous and persistent
nature in meat processing facilities (Glass and
Doyle, 1989). Additionally, outbreaks caused by
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L. monocytogenes result in higher mortality rates com-
pared with other bacterial pathogens (CDC, 2019).
Recent estimates from the European Food Safety
Authority on the levels of L. monocytogenes contami-
nation of RTEmeat products report a 0.43% prevalence
based on the microbiological limit of 100 colony form-
ing units (CFU) per gram (EFSA BIOHAZ Panel,
2018). Given the presence of foodborne pathogens in
highly perishable foods such as meat and meat prod-
ucts, it is critical to develop and implement processing
technologies to effectively mitigate the risk and
enhance public health.

Packaging Technologies

Packaging is an essential operation for marketing
meat and meat products. The primary function of
packaging is to provide a protective barrier against
environmental and physical damage, enzymatic oxida-
tion, and microbial deterioration, as well as to prevent
contamination (Han, 2003). Vacuum and modified
atmosphere packaging are widely used technologies
designed to improve the microbiological safety and
extend shelf life of meat and meat products during stor-
age (Narasimha Rao and Sachindra, 2002). However,
newer and innovative packaging technologies (active
and intelligent packaging) have emerged in recent
years in an effort to meet the increased regulatory scru-
tiny regarding the safety and quality of meat and meat
products.

Active packaging

Active packaging relies on the interaction between
packaging materials, the product, and the environ-
ment for shelf life extension and food safety assurance
(Quintavalla and Vicini, 2002). The internal environ-
ment can be controlled by substances acting as
scavengers or emitters of specific gases, such as oxygen,
ethylene, or carbon dioxide (Janjarasskul and Suppakul,
2018). Active food packaging systems are classified
based on their bioactive ingredients and methods of
application. For example, oxygen scavengers and car-
bon dioxide emitters are commonly incorporated into
sachets or pads placed inside the package (Otoni et al.,
2016). These sachets can also be used to deliver antimi-
crobial compounds such as chlorine dioxide (Park and
Kang, 2015). However, another more frequently used
technology is one in which the antimicrobial substances
are dispersed, immobilized, or coated onto the packag-
ing film (Muriel-Galet et al., 2013; Han et al., 2014;

Woraprayote et al., 2018). Antimicrobial packaging has
shown great potential as an effective application of
active packaging technology, particularly for meat and
meat products (Quintavalla and Vicini, 2002).Microbial
contaminants of meats are primarily concentrated on
the surface, and microbial growth can therefore be in-
hibited as the food surface comes in contact with the
antimicrobial substances in the packaging (Han, 2003).
Antimicrobial packaging systems can be classified
based on the delivery method of the active agent:

1. Incorporating antimicrobials into sachets and
absorbent pads. Often, sachets carry volatile anti-
microbials that diffuse into the package head-
space (Otoni et al., 2016), whereas absorbent
pads are designed to retain excess moisture from
meat products but can also carry antimicrobial
agents and act through direct surface contact
(Agrimonti et al., 2019);

2. Incorporating or coating antimicrobial substances
into packaging polymers, where preservative
effects are achieved via controlled migration of
the active substance onto the foods. A slow
release of the biocidal agent provides extended
exposure to the antimicrobial without posing toxi-
cological risk to consumers (Han, 2003). To pre-
vent extensive migration, antimicrobial agents
can be chemically immobilized to the surface of
the packaging material; however, direct contact
with the food is still required (Muriel-Galet et al.,
2013); and

3. Use of edible coatings consisting of biopolymers
with innate antimicrobial properties or antimicro-
bial agents (Arkoun et al., 2018). A number of
substances have been researched for their antimi-
crobial properties once incorporated into packag-
ing systems. These systems commonly rely on
natural, food-grade antimicrobials such as essen-
tial oils, bacteriocins, and antimicrobial polysac-
charides (Marcos et al., 2013; Han et al., 2014).

Essential oils are effective for use in the meat
industry and have extensive applications in packaging
(Mousavi Khaneghah et al., 2018). In particular,
oregano, thyme, and clove essential oils have received
attention for their antimicrobial activity when incorpo-
rated into synthetic and edible films. Yemiş and
Candoğan (2017) demonstrated antimicrobial activity
of soy edible films incorporated with oregano and
thyme essential oils at concentrations of 1%, 2%,
and 3% against E. coli O157:H7, L. monocytogenes,
and S. aureus in a concentration-dependent manner
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during refrigerated storage of beef cuts. The antimicro-
bial effects of edible soy films with added oregano
essential oils were also examined by Emiroğlu et al.
(2010) on fresh ground beef patties. Films with 5%
oregano essential oil reduced Pseudomonas spp. and
coliforms by 0.74 and 1.6 log10 CFU/g, respectively,
yet no reduction was seen for total viable counts, lactic
acid bacteria, or Staphylococcus spp. during 12 d of stor-
age at 4°C. Synthetic films with incorporated essential
oils, particularly low-density polyethylene, have shown
promise as antimicrobial packaging systems against
pathogens in meats, both in vitro (Shemesh et al.,
2015) and on fresh beef (Han et al., 2014).

Bacteriocins from lactic acid bacteria have been
reported to have applicability in antimicrobial pack-
aging of meat and meat products with nisin-based
films being used as popular alternatives due to their
potential to inhibit pathogenic bacteria, particularly
in RTE products (Nguyen et al., 2008; Marcos et al.,
2013). Nguyen et al. (2008) showed that bacterial cel-
lulose films with nisin incorporated at 2,500 IU/mL
reduced populations of L. monocytogenes on the
surface of frankfurters by 2 log10 CFU/g during 14 d
of refrigerated storage. In a different study, nisin-
containing polyvinyl alcohol films demonstrated
reductions of 1.4 log10 CFU/g on L. monocytogenes
at the end of the 90-d refrigerated storage period
(Marcos et al., 2013). Novel bacteriocins have been
investigated over the years, for their potential use in
antimicrobial packaging of foods (Woraprayote et al.,
2018). For instance, a study by Barbiroli et al. (2017)
showed that incorporation of the peptide Sakacin A—
recovered from a strain of Lactobacillus sakei—onto
polyethylene-coated paper sheets reduced Listeria
innocua populations by 1.5 log10 CFU/g in thin-cut
veal meat slices.

Oxygen scavengers and carbon dioxide generators
are among the most commercially available active pack-
aging technologies, along with absorbent pads, and have
been widely used in the food industry due to their anti-
microbial and antioxidant properties (Otoni et al., 2016).
Carbon dioxide emitters are commonly used in combi-
nation with oxygen scavengers to inhibit the growth of
spoilage organisms, thus extending the shelf life ofmany
meat and poultry products (Fang et al., 2017). These sys-
tems have also been investigated for food safety appli-
cations (Holck et al., 2014), and Chen and Brody (2013)
showed that oxygen scavengers and carbon dioxide
emitters control the growth of L. monocytogenes on
cooked hamwhen incorporated into antimicrobial films.
Furthermore, emitting sachets of chlorine dioxide have
been evaluated for their antimicrobial activity against

major foodborne pathogens (Ellis et al., 2006; Park
and Kang, 2015). Shin et al. (2011) reported reductions
of S. Typhimurium and L. monocytogenes on raw
chicken breasts when sachets of chlorine dioxide were
used in combination with modified atmosphere packag-
ing. Similar results were reported by Ellis et al. (2006),
with reductions of about 1 log10 CFU/g on chicken
breasts under refrigerated storage.

In recent years, nanotechnology has been regarded
as a promising tool to improve antimicrobial packaging
of foods (Duncan, 2011). Applications in meat packag-
ing include the use of metal nanoparticles as antimicro-
bial agents incorporated into packaging systems,
as well as the development of biopolymer nanocompo-
site films and coatings (Singh et al., 2016). A study by
Mahdi et al. (2012) showed nanosilver polyvinyl chlo-
ride packaging tray inhibited the growth of E. coli
on minced beef during 7 d of refrigerated storage.
Cellulose pads incorporated with silver nanoparticles
exhibited average reductions of 1 log10 CFU/g for
Pseudomonas spp.,Enterobacteriaceae, and total aero-
bic bacteria on beef stored under modified atmosphere
packaging (Fernandez et al., 2010). Chitosan has also
been extensively studied in antimicrobial packaging of
meats (Dehnad et al., 2014), and chitosan-based nano-
composite films have exhibited antimicrobial activity
againstE. coli in inoculated veal meat during a 7-d stor-
age at 4°C, with reported reductions of > 1-log CFU/g
(Arkoun et al., 2018).

Intelligent packaging

Intelligent packaging is a novel packaging technol-
ogy that goes beyond providing a physical protective
barrier between the product and packaging environ-
ment (Fang et al., 2017). Intelligent packaging systems
are designed to monitor this interaction through indica-
tors and sensors and have been commercially used as
indicators of freshness, atmosphere integrity, time
and temperature, and radio frequency identification
(Fuertes et al., 2016). When combined with nanotech-
nology, intelligent packaging can be applied as a rapid
monitoring intervention for food safety. Nanosensors
can be used to detect changes in oxygen levels (Borisov
and Klimant, 2009), temperature fluctuations during
storage (Nopwinyuwong et al., 2014), and formation
of toxic compounds as indicators of microbial growth
(Wang et al., 2011). Some examples include the devel-
opment of an oxygen gas indicator from nano TiO2
powder that can be incorporated in the packaging film
(Liu et al., 2013) or the coupling of gold nanoprobes
with superparamagnetic beads for the detection of
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aflatoxin M1 in milk (Zhang et al., 2013). Future
applications of this technology in food safety include
incorporation of fluorescent nanoparticles to detect
pathogens and their toxins in food samples
(Stanisavljevic et al., 2015). Quantum dots have been
successfully used, for example, in the development of
Förster resonance energy transfer nanosensors for
detection of botulinum neurotoxin A (Sapsford et al.,
2011) and staphylococcal enterotoxin B (Vinayaka
and Thakur, 2013).

Nonthermal Technologies

Consumer trends favor the production of mini-
mally processed foods that retain “fresh” organoleptic
characteristics without compromising microbiological
safety and extended shelf life. Traditional thermal
processing technologies of foods are considered reli-
able interventions but can induce undesirable effects
on the sensorial and nutritional value of certain food
products. In recent years, researchers have focused
efforts toward the development of nonthermal technol-
ogies characterized by low treatment intensity and high
efficiency that are able to provide a comparable level of
protection against microbial and enzymatic activity
while maintaining food quality (Bhavya and Umesh
Hebbar, 2017; Barbosa-Cánovas and Zhang, 2019;
Pérez-Baltar et al., 2020).

High-pressure processing

High-pressure processing (HPP), a nonthermal
food preservation technology, relies on the application
of high pressure (100–1,000 MPa) for the inactivation
of spoilage organisms and foodborne pathogens
(Torres and Velazquez, 2005). Industrial applications
of HPP for food safety has been growing rapidly in
recent years, especially with RTE meats and seafood
(Huang et al., 2017).

Implementation of HPP in meat processing has
been approved by the USDA-FSIS as it has shown
remarkable capability of inhibiting the growth of L.
monocytogenes in post-lethality–exposed RTE meats
(USDA-FSIS, 2012, 2014). Its applicability as an
effective antimicrobial intervention has been demon-
strated in other meat products such as dry-cured ham
(Hereu et al., 2012; Bover-Cid et al., 2017), cooked
ham (Jofré et al., 2008; Han et al., 2011), and ground
beef (Black et al., 2010; Hsu et al., 2015). Pérez-Baltar
et al. (2020) showed that HPP treatment at 600MPa for
5 min reduced L. monocytogenes by 2 and 3 log units
on the surface and interior of deboned dry-cured hams,

respectively. Novel approaches in meat processing rely
on the combination of HPP with other antimicrobial
interventions as a multi-hurdle strategy to increase
the lethality of HPP and decrease production costs
(Hygreeva and Pandey, 2016). Combinations of HPP
with extracts of Melissa officinalis (commonly known
as lemon balm) leaves was reported to reduce E. coli,
which included major serotypes of Shiga toxin–
producing E. coli, by 3 to 6 log10 CFU/g in ground beef
after 24 h of refrigerated storage (Chien et al., 2019).
Pérez-Baltar et al. (2019) showed that a combination
of enterocins and HPP treatment at 450 MPa for
10 min reduced L. monocytogenes on dry-cured ham
slices for up to 30 d of storage at 4°C and 12°C.
Synergistic effects of HPP and active packaging on
meat products have been reported, including antimicro-
bial packaging incorporated with natural oils (Ahmed
et al., 2017; Amaro-Blanco et al., 2018), edible films
supplemented with probiotics (Pavli et al., 2018), and
nisin-incorporated polyvinyl alcohol films (Marcos
et al., 2013).

HPP can be combined with heat to improve inac-
tivation of pathogenic spores in meat products (Zhu
et al., 2008; Silva, 2016), a process known as pres-
sure-assisted thermal processing (PATP; Valdez-
Fragoso et al., 2011). The PATP can quickly increase
the temperature of food as a result of compression heat-
ing due to high pressure, thus minimizing the defects
caused by high temperatures, as sterilization is attained
in a shorter time with lower temperature (Barbosa-
Cánovas et al., 2014). Shorter processing times might
not inactivate C. botulinum, which would be a limiting
factor for adopting this technology (Raso and Barbosa-
Cánovas, 2003).With the application of PATP technol-
ogy, promising results in terms of quality in foods such
as chicken breast fillets and fish products have been
observed. However, its potential to improve food safety
in meat products needs to be further evaluated (Lau and
Turek, 2007; Sevenich, 2016).

Pulsed Electrical Field (PEF)

PEF is another emerging antimicrobial technology
with varied applications in the food industry (Wan et al.,
2009; Buckow et al., 2013; Barbosa-Cánovas and
Zhang, 2019). Analogous to other nonthermal preser-
vation technologies, PEF can kill microorganisms
without undesirable changes to the organoleptic char-
acteristics in foods (Buckow et al., 2013). The technol-
ogy consists of application of short, high-voltage
electric field pulses to food that is placed between 2
electrodes. For food safety applications, electric field
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strengths of 20 to 50 kV/cm for 1–10 μs are necessary
(Buckow et al., 2013). PEF has been proven to be a suc-
cessful decontamination technology in many liquid
foods, such as milk (Pina-Pérez et al., 2012), juices
(Buckow et al., 2013; Jin et al., 2014), and liquid eggs
(Monfort et al., 2010; Espina et al., 2014). However, its
preservative efficacy in meat products seems limited,
due to the poor conductivity associatedwith high protein
and fat levels (Bhat et al., 2019). Bolton et al. (2002)
reported that PEF treatment of beef burgers and trim-
mings was unsuccessful at reducing E. coli O157:H7,
which was further supported by Stachelska et al.
(2012). The authors showed that a PEF treatment of
300 V/m at a frequency of 28 MHz did not inactivate
Yersinia enterocolitica in minced beef; however, reduc-
tions were observed when a frequency of 2,800 MHz
was used. Enhanced antimicrobial efficacy of PEF has
been reported in meat solutions (Rojas et al., 2007)
and meat products immersed in brine (Saif et al.,
2006). However, this technology continues to have lim-
ited applicability in enhancing the microbiological
safety of meat and meat products.

Pulsed light

Pulsed light technology is another form of nonther-
mal technology that has been gaining popularity in
recent years for its food safety applications (Heinrich
et al., 2015; Bhavya and Umesh Hebbar, 2017).
Pulsed light uses high-frequency light pulses of varied
wavelengths (200–1,100 nm) for short time periods to
achieve microbial inactivation in foods (Dunn et al.,
1995; Bhavya and Umesh Hebbar, 2017). Similar to
PEF, its efficacy as a preservation technology has been
extensively reviewed in liquid foods (Palgan et al.,
2011; Pataro et al., 2011), while studies evaluating
its antimicrobial effects on meat and meat products
are limited. Pulsed light has the potential to enhance
microbiological safety and shelf life of RTEmeat prod-
ucts at post-packaging (Hierro et al., 2011, 2012). In
a study by Hierro et al. (2011), the surface application
of PL at 8.4 J/cm2 resulted in 1.78 and 1.11 log10 CFU/
cm2 reductions of L. monocytogenes in vacuum-
packaged cooked ham and bologna slices, respectively.
Similar reductions were achieved for L. monocyto-
genes and S. Typhimurium on the surface of dry-
cured meat products when pulsed light was applied
at 11.9 J/cm2 (Ganan et al., 2013).

Cold plasma technology

Cold plasma technology is a novel nonthermal
treatment exhibiting a wide range of activity against

major foodborne pathogens of concern to the meat
industry (Yun et al., 2010; Ziuzina et al., 2013; Han
et al., 2016; Yong et al., 2017). Cold plasma technol-
ogy generates reactive oxygen species, reactive nitro-
gen species, and ultraviolet (UV) radiation that can
induce lesions on cell membranes and DNA damage
(Laroussi et al., 2003). Hence, this technology can
inactivate bacteria, fungi, and even viruses of food
safety importance (Lacombe et al., 2017; Yong et al.,
2017; Sen et al., 2019). Various methods of plasma
technology have been investigated for meat decontami-
nation. Exposure to dielectric barrier discharge plasma,
for example, can achieve reductions of ≤0.5 log10
CFU/g for E. coli and L. monocytogenes in pork loins
with minimum impact on food quality (Kim et al.,
2013). Radio-frequency atmospheric pressure plasma
has been shown to inactivate S. aureus inoculated onto
the surface of beef jerky; however, inactivation was
associated with longer treatment times (8 min) that
increase the temperature of the food product (Kim et al.,
2014). Yong et al. (2017) also investigated the antimi-
crobial effects of cold plasma technology on beef jerky,
reporting that application of a flexible thin-layer
plasma treatment for 10 min could induce reductions
of 2 to 3 log10 CFU/g on microbial populations of E.
coli O157:H7, L. monocytogenes, S. Typhimurium,
and Aspergillus flavus. Furthermore, atmospheric pres-
sure plasma has also shown efficacy against pathogenic
bacteria on the surface of meat packaging films
without compromising physicochemical and sensorial
properties (Bauer et al., 2017). This technology there-
fore serves as a desirable candidate in multi-hurdle
approaches with extensive applications in food packag-
ing surface decontamination (Pankaj et al., 2014).

Irradiation

Irradiation is an established and effective decon-
tamination technology for the production of safe foods;
however, consumer perceptions have limited the
acceptability of irradiated meat products. The technol-
ogy was authorized for use in red meats by the USDA
in 1997 (62 FR 64107) (Federal Register, 1997), and
it has proven successful at controlling L. monocyto-
genes in RTE meat products upon refrigerated storage
(Sommers et al., 2004). Nonthermal applications of
irradiation for food safety purposes consist of low
doses of ionizing radiation, usually gamma, ranging
from 1 to 10 kGy. Doses as low as 3 kGy can reduce
bacterial loads of E. coli O157:H7 and L. monocyto-
genes in raw beef sausage by more than 3 log units
and maintain undetectable levels of the pathogens
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during refrigerated storage for 12 d (Badr, 2005).
Furthermore, Jo et al. (2004) showed that irradiation
doses of 4 kGy applied to marinated beef ribs were able
to inactivate all 6 log10 CFU/g of S. aureus, B. cereus,
S. Typhimurium, and E. coli during storage at 4°C.

Electron beam irradiation has emerged in recent
years as a food decontamination technology with com-
parable efficacy to the more traditional gamma rays (Jo
et al., 2004). This technology has a high-energy beam
of pulsed electrons as the source of ionizing radiation
that can disrupt microbial cells (Lung et al., 2015). As
reported byKundu et al. (2014), doses of electron beam
treatment as low as 1 kGy can reduce bacterial popula-
tions ofE. coli on beef surfaces. Average log reductions
of 4 log10 CFU/g were seen for E. coli O157:H7 on
beef, whereas lower reductions, averaging 1 log10
CFU/g, were exhibited for Salmonella serotypes. The
potential of electron beam irradiation technology was
also highlighted by Cabeza et al. (2009), who reported
inactivation of L. innocua and serovars of S. enterica
on dry fermented meat products when a dose of
1.3 kGy of electron beam irradiation was applied.

Ultrasound

Ultrasound technology for food preservation relies
on the application of sound pressure waves with a fre-
quency greater than 20 kHz. Commonly known as
high-power ultrasound, the antimicrobial effects of this
technology are due to inducing chemical alterations on
microbial cellmembranes and generation of free radicals
(Chemat et al., 2011). Ultrasound treatments at high
intensity, above 1 W/cm2, with frequencies ranging
between 20 and 500 kHz have been successfully used
for decontamination of juices (Ferrario et al., 2015)
and fresh produce (São José et al., 2012). The potential
of high-power ultrasound as a decontamination technol-
ogy for application inmeat and poultry products has also
been investigated, yet data are still limited (Haughton
et al., 2012). Researchers report inconsistent antimicro-
bial effects of ultrasound technology when the technol-
ogy is used as a single hurdle (Birk and Knøchel, 2009;
Morild et al., 2011; Kordowska-Wiater and Stasiak,
2011). In a recent study, Kang et al. (2017) showed that
ultrasound treatment of 20.96 W/cm2 for 120 min effec-
tively inhibited E. coli O157:H7 in brine for curing but
could not reduce pathogen populations on beef. How-
ever, improved antimicrobial efficacy of ultrasound
has been reported by other authors when used in combi-
nation with steam (Morild et al., 2011), marination
(Birk and Knøchel, 2009), or lactic acid solutions
(Kordowska-Wiater and Stasiak, 2011).

Thermal Technologies

Thermal processing to inactivate pathogens in
meat products typically employ steam or hot water dur-
ing meat processing. These conventional methods
slowly conduct heat from the source to the thermal
center of the meat, which requires longer cooking times
and causes nonuniform heating of the product (Wang
et al., 2009). Prolonged cooking leads to deterioration
in the product quality, e.g., off-flavors and loss of
nutrients (Mckenna et al., 2006). To overcome the
drawbacks of conventional methods, there have been
recent advancements in novel thermal processing tech-
nologies, such as ohmic heating, high-frequency heat-
ing (which involves long-time heat treatment of meat
products), and radiofrequency and microwave heating
(which involve generation of heat directly inside the
food, thereby inactivating pathogens) (Kumar, 2018).

Ohmic heating

Ohmic heating, also referred to as electrical resis-
tance heating, involves the passage of alternating elec-
tric current through the food to produce heat. Heat in
the food is produced by electrical resistance offered
by the food, which converts electrical energy to heat
energy (Stratakos and Koidis, 2015). Ohmic heating
leads to microbial inactivation by its thermal effects
which destroy the bacterial cell membrane and
enzymes in the food products (Sun et al., 2011). In
addition to thermal inactivation, ohmic heating results
in the phenomenon of electroporation, i.e., the forma-
tion of pores in the microbial cell membrane. This phe-
nomenon leads to leakage of cellular contents such as
amino acids, nucleic acids, and proteins, eventually
causing cell death (Knirsch et al., 2010). Moreover,
ohmic heating facilitates the formation of free radicals
andmetal ionswhich cause the chemical inactivation of
bacterial cells (Guillou and El Murr, 2002). Several
studies have been conducted to verify the efficacy of
ohmic heating against pathogenic microorganisms in
meat and meat products. Sengun et al. (2014) studied
the effect of ohmic heating (50 Hz, 15.26 V/cm, 75°C,
0-s holding time) against Salmonella spp., S. aureus,
and L. monocytogenes on meatballs and reported com-
plete elimination of Salmonella spp., a reduction of
S. aureus to an undetectable level from meatballs, but
a lack of effect against L. monocytogenes. Mitelut et al.
(2011) reported that ohmic heating (50 Hz, 81°C,
10 min) resulted in complete inactivation of S. aureus
and P. aeruginosa in minced pork meat and meat-
ball samples. Another study comparing the effect of
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conventional steam heating (71°C, 105min) and ohmic
heating (50 Hz, 8.33 V/cm, 72°C, 15 min) against L.
innocua in meat reported that similar inactivation of
L. innocua by 7 log10 CFU/g was observed for both
the treatments (Zell et al., 2010). However, inactivation
by ohmic heating was achieved with a shorter heating
time of 15 min compared with the conventional steam
heating (105 min). Sengun et al. (2015) studied the
effect ohmic heating in combination with infrared heat-
ing against S. aureus, Salmonella spp., C. perfringens,
L. monocytogenes, and E. coli O157:H7 in meatballs
and reported complete elimination of all pathogenic
microorganisms tested. These results suggest that
ohmic heating is an effective technology to eradicate
pathogens from meat and meat products; however,
its efficacy depends on processing parameters used
during ohmic heating (Knirsch et al., 2010).

High-frequency heating

Radiofrequency heating. Radiofrequency heating is a
volumetricmethod that imparts direct heat to the food by
converting electrical energy into heat energy in the food
itself (Guo et al., 2006). A radiofrequency heating sys-
tem comprises a radiofrequency generator that produces
an alternating electric field between the 2 electrodes
where the food material is placed. Oscillating molecules
and ions in the food material undergo a rotational move-
ment of positive ions toward negative regions of the
electric field and vice versa at a high frequency of
27 MHz (Awuah et al., 2005). This leads to molecular
friction which facilitates dissipation of heat energy
throughout the foodmaterial, thereby inactivating patho-
gens (Orsat and Raghavan, 2014). Radiofrequency
heating has the ability to penetrate up to 20 cm into
the food, ensuring uniform heating inside the food
matrix (Altemimi et al., 2019). In recent years, the poten-
tial of radiofrequency heating has been investigated
against pathogenic microorganisms in meat and meat
products. Rincon and Singh (2016) reported that radio-
frequency cooking (27.12 MHz and 6 kW radiofre-
quency oven power) of nonintact beefsteaks to 65°C
resulted in a 5-log reduction of E. coli O157:H7, O26:
H11, and O111. Another study reported that radiofre-
quency heating of ground beef inoculated with E. coli
K-12 resulted in pathogen reduction to undetectable lev-
els (Guo et al., 2006). Byrne et al. (2010) investigated
the efficacy of radiofrequency heating (500 W, 80°C,
33min) and reported 5.3 and 6.9 log10 CFU/g reductions
in B. cereus and C. perfringens, respectively, in
pork luncheon rolls. Schlisselberg et al. (2013) studied
the effect of radiofrequency heating (7.5 min) on

S. Typhimurium, E. coli, and L. monocytogenes inocu-
lated on meatballs and reported that radiofrequency
treatment resulted in reduction of Salmonella by 5.5
log10 CFU/g and E. coli populations below the limit
of detection, while L. monocytogenes inoculated on
meatballs were resistant to radiofrequency cooking
(reduction< 0.5 log10 CFU/g). Limited documentation
is available to justify the resistant nature of L. monocy-
togenes to heat generated by radiofrequency. While the
efficiency of radiofrequency heating against pathogenic
bacteria in meat has been evaluated, more research is
required to explore its potential in improving the safety
of RTE meat products.

Microwave heating. Microwave heating technology
is widely used in households; however, it has a limited
industrial acceptance for improving the safety of meat
products (Stratakos andKoidis, 2015). Similar to radio-
frequency heating, microwave heating results in volu-
metric heating in which heat is generated inside the
food matrix from the conversion of electromagnetic
radiations (915–2,450 MHz) into thermal energy,
increasing the temperature of food at a faster rate
(Hebbar and Rastogi, 2012). In a study conducted to
explore the antimicrobial efficacy of microwave heat-
ing against E. coli O157:H7 inoculated on mechani-
cally tenderized beef, it was found that microwave
heating at 80°C for 1 min eliminated E. coli O157:
H7 (Huang and Sites, 2010). The authors further sug-
gested that a 2-step microwave heating, i.e., initial
heating (65°C for 1 min) followed by secondary heat-
ing (65°C for 3 min or 70°C for >1 min) eliminated E.
coli O157:H7 from the samples resulting in uniform
heating while preventing overcooking or internal
explosions in themeat product. Rodríguez-Marval et al.
(2009) showed that microwave heating (1,100 W at
2,450 MHz) of frankfurters for 75 s can reduce L.
monocytogenes by up to 3.7 log10 CFU/cm2. It has also
been reported that the electromagnetic energy in micro-
wave heating leads to the thermal irreversible denatu-
ration of proteins, nucleic acids, and enzymes in the
microorganisms, eventually leading to cell death (Dev
et al., 2012). However, microwave heating is often
associated with the problem of nonuniform heating
in the product, which can possibly lead to the survival
of pathogens in the cold spots within the food (Ahmed
and Ramaswamy, 2004). Therefore, to improve the
efficiency of microwave heating for microbial safety
of meat products, it is recommended to use this tech-
nique in combination with traditional heating such as
in microwave assisted pasteurization system or micro-
wave assisted thermal sterilization (MATS) (Neetoo
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et al., 2012). MATS is the combination of microwave
heating with thermal sterilization and utilizes water
as a heating medium (initial heating step) followed
by microwave heating of food (Khan et al., 2017).
MATS has been suggested as an emerging technology
that permits effective sterilization while preserving the
nutritional, sensory, and quality attributes of food,
thereby overcoming the limitations of microwave heat-
ing (Barbosa-Cánovas et al., 2014; Soni et al., 2020).
Limited documentation suggesting the efficacy of
MATS in improving the microbial safety of meat and
meat products is available, thus warranting future
research.

Other Emerging Technologies

A review of the literature suggests that other tech-
nologies such as chemical and biological interventions
are widely and successfully used for reduction of patho-
gens in meat and meat products. Chemical interventions
including organic acids, oxidizing antimicrobials, and
ozone have been widely implemented for meat safety;
however, negative consumer perceptions about chemi-
cal antimicrobials have prompted the need to investigate
and adopt alternative interventions such as essential oils,
bacteriocins, and bacteriophages. These pathogen con-
trol strategies are further discussed below.

Organic acids

Organic acids such as lactic and acetic acids are
commonly used for reducing the prevalence and num-
ber of pathogens duringmeat processing. Organic acids
can be applied pre evisceration (after hide removal) or
post evisceration before chilling, during chilling, or
after chilling. The most common route of application
is spraying in a spray cabinet, but immersion may also
be used (Loretz et al., 2011; King et al., 2012; EFSA
CEP Panel, 2018). The efficacy of antimicrobial activ-
ity depends on the type of meat product, initial micro-
bial load, type of bacterial contaminants, and ability to
form biofilms (Lianou et al., 2012; Koutsoumanis and
Skandamis, 2013); however, operational parameters
such as temperature and duration of application as well
as coverage and contact time (Lianou et al., 2012;
DeGreer et al., 2016) are critical for efficacy against
pathogens. Concerns about the use of organic acids that
can limit their use during meat processing include qual-
ity retention, acid adaptation, and hazards for operators
(Koutsoumanis and Skandamis, 2013).

Peroxyacetic acid

Peroxyacetic acid (PAA) belongs to a class of man-
made chemicals known as organic peroxides (Lianou
et al., 2012). The high oxidizing potential and low
pH of PAA ensures it functions well as an antimicro-
bial; however, PAA can also be used over a wide range
of temperatures and pH, is not affected by organic
material, and does not have adverse effects on meat
quality (Lianou et al., 2012; Kocharunchitt et al.,
2020). It is primarily used as a carcass rinse in beef
processing plants but may also be applied during spray
chilling of carcasses (Cap et al., 2019). However, some
research has shown that it may be more effective when
sprayed on hot carcasses (Han et al., 2020), but findings
on the effectiveness of PAA are conflicting and depend
on concentration, carcass part, application method,
contact time, and stage of processing (Thomas
et al., 2020).

Electrolyzed oxidizing water

Electrolyzed oxidizing water (EOW) is produced
by electrolyzing water and salt in an electrolysis cham-
ber. When electric current passes through the chamber,
the saline solution dissociates into alkaline and acidic
EOW. Alkaline EOW has strong reducing capacity and
can be used in place of a detergent (Cheng et al., 2012),
while acidic EOW has strong oxidation reduction
potential, making it a good antimicrobial against
microorganisms (Al-Holy and Rasco, 2015). EOW is
generated on-site, which eliminates problems with
transport, storage, and handling of dangerous chlorine.
However, it loses antimicrobial activity quickly if not
continuously generated due to evaporation of chlorine
(Cheng et al., 2012).

Ozonation

Ozone is an allotrope of oxygen with strong
oxidative properties against both gram-positive and
gram-negative bacteria (Cardenas et al., 2011;
Kalchayanand et al., 2019). The two main methods
to generate ozone are photochemical (UV) and corona
discharge, with UV being the most applicable in the
food industry (Brodowska et al., 2018). Use of ozone
is promising since it does not leave chemical residues,
can be applied to many different types of foods, and
is relatively eco-friendly (Tapp and Rice, 2012;
Brodowska et al., 2018; Pandiselvam et al., 2019).
However, some disadvantages include that ozone
cannot be stored and must be generated on-site for
application, since it has a relatively short half-life.

Meat and Muscle Biology 2020, 4(2): 14, 1–18 Singh et al. Meat processing technologies

American Meat Science Association. 9 www.meatandmusclebiology.com

www.meatandmusclebiology.com


Additionally, the effectiveness of ozone relies on fac-
tors such as type of meat product, target microorgan-
ism, and initial level of contamination (Chawla et al.,
2012; Miller et al., 2013; Brodowska et al., 2018).

Essential oils

Essential oils are plant-based products that have
shown a wide range of antimicrobial activity against
spoilage and pathogenic microorganisms (Dussault
et al., 2014; Liu et al., 2017). The antimicrobial effects
of essential oils come from their major bioactive
compounds (e.g., terpenes such as thymol and carva-
crol or phenylpropanoids such as cinnamaldehyde
and eugenol) with antimicrobial efficacy dependent
on the composition and concentration of mixtures of
bioactive compounds as well as the species and strain
of the target microorganisms (Efenberger-Szmechtyk
et al., 2020). Essential oils are limited in use because
of their sensory changes to meat products, unknown
toxicity, and marked decrease in activity in food sys-
tems versus in vitro (Hygreeva et al., 2014). They
may be better suited for use in a hurdle system in which
lower concentrations can be combined with other anti-
microbial technologies (Jayasena and Jo, 2013).

Bacteriocins

Bacteriocins are natural antimicrobials that
are extracellularly released bioactive peptides syn-
thesized by the ribosome of bacteria and have been
reported to have bactericidal or bacteriostatic activity
against closely related microbial species by destroy-
ing the cytoplasmic membrane (Castellano et al.,
2017; Kęska et al., 2017; da Costa et al., 2019).
Bacteriocins generally show a wide spectrum of activ-
ity against gram-positive bacteria but may require
impairment of the outer membrane by other methods
before they can be effective against gram-negative
bacteria (Castellano et al., 2017).While many bacteria
are capable of producing bacteriocins, lactic acid bac-
teria are the most commonly studied because of their
application in the food industry (Kareem and Razavi,
2020). There are 2 methods to incorporate bacterio-
cins into meat products: (1) addition of purified or
semi-purified bacteriocins into products or (2) use
of bacteriocin-producing bacterial strains for in situ
production (Castellano et al., 2017; Kęska et al.,
2017; da Costa et al., 2019). Bacteriocins are limited
in use because their effectiveness depends on interac-
tion with the food matrix, target bacteria, or meat
microbiota (Todorov et al., 2010; Campos et al.,

2013). Furthermore, there is limited information
about their toxicity and presence of virulence factors
(Carneiro et al., 2014; Favaro and Todorov, 2017),
making it challenging to incorporate as an interven-
tion for safety of meat and meat products.

Bacteriophages

Bacteriophages are viruses that infect and kill bac-
terial cells. There are numerous post-harvest applica-
tions for bacteriophages given their activity against a
broad spectrum of foodborne pathogenic bacteria
(Yeh et al., 2018). Phages are highly specific to one
bacterial species or even one strain of a species, which
means they have limited application and bacterial tar-
gets may rapidly develop resistance (Zhang et al.,
2015). Therefore, developing bacteriophage cocktails
containing multiple, diverse phages that use different
bacterial surface receptors could counter this limitation
(Moye et al., 2018). There are multiple limiting factors
for the use of bacteriophages in meat production,
including decrease in bacteriophage titers when applied
to meat products, reduction (but not elimination) of
bacterial targets, and inhibition of efficacy when used
with chemical sanitizers, food additives, or antibiotics
(Cooper, 2016).

Conclusions

New technologies play an important role and have
shown potential benefits for meat processors and con-
sumers. However, these technologies should be a part
of a multi-hurdle approach to food safety as there is
limited information about the success of any single
technology individually controlling and/or eliminating
the hazards. Additionally, success of application of
technologies to enhance meat safety relies on research
demonstrating enhancement of safety of meat and meat
products without compromising quality, responding to
consumer concerns, and offering tangible benefits of
meat processing technologies.

Literature Cited

Agrimonti, C., J. C. White, S. Tonetti, and N. Marmiroli. 2019.
Antimicrobial activity of cellulosic pads amended with emul-
sions of essential oils of oregano, thyme and cinnamon against
microorganisms in minced beef meat. Int. J. Food Micro-
biol. 305:108246. https://doi.org/10.1016/j.ijfoodmicro.
2019.108246.

Meat and Muscle Biology 2020, 4(2): 14, 1–18 Singh et al. Meat processing technologies

American Meat Science Association. 10 www.meatandmusclebiology.com

https://doi.org/10.1016/j.ijfoodmicro.2019.108246
https://doi.org/10.1016/j.ijfoodmicro.2019.108246
www.meatandmusclebiology.com


Ahmed, J., andH. S. Ramaswamy. 2004.Microwave pasteurization
and sterilization of foods. Food Sci Tech. Marcel Dekker,
New York. 167:691.

Ahmed, J., M. Mulla, and Y. A. Arfat. 2017. Application of high-
pressure processing and polylactide/cinnamon oil packaging
on chicken sample for inactivation and inhibition of
Listeria monocytogenes and Salmonella Typhimurium, and
post-processing film properties. Food Control. 78:160–168.
https://doi.org/10.1016/j.foodcont.2017.02.023.

Al-Holy, M. A., and B. A. Rasco. 2015. The bactericidal activity of
acidic electrolyzed oxidizing water against Escherichia coli
O157:H7, Salmonella Typhimurium, and Listeria monocyto-
genes on raw fish, chicken, and beef surfaces. Food Control.
54:317–21. https://doi.org/10.1016/j.foodcont.2015.02.017.

Altemimi, A., S. N. Aziz, A. R. Al-HiIphy, N. Lakhssassi, D. G.
Watson, and S. A. Ibrahim. 2019. Critical review of radio-fre-
quency (RF) heating applications in food processing. Food
Quality and Safety. 3:81–91. https://doi.org/10.1093/fqsafe/
fyz002.

Amaro-Blanco, G., J. Delgado-Adámez, M. J. Martín, and R.
Ramírez. 2018. Active packaging using an olive leaf extract
and high pressure processing for preservation of sliced dry-
cured shoulders from Iberian pigs. Innov. Food Sci. Emerg.
45:1–9. https://doi.org/10.1016/j.ifset.2017.09.017.

Arkoun, M., F. Daigle, R. A. Holley, M. C. Heuzey, and A. Ajji.
2018. Chitosan-based nanofibers as bioactive meat packaging
materials. Packag. Technol. Sci. 31:185–195. https://doi.org/
10.1002/pts.2366.

Awuah, G. B., H. S. Ramaswamy, A. Economides, and K.
Mallikarjunan. 2005. Inactivation of Escherichia coli K-12
and Listeria innocua in milk using radio frequency (RF) heat-
ing. Innov. Food Sci. Emerg. 6:396–402. https://doi.org/10.
1016/j.ifset.2005.06.002.

Badr, H. M. 2005. Elimination of Escherichia coli O 157: H7 and
Listeria monocytogenes from raw beef sausage by γ-irradia-
tion. Mol. Nutr. Food Res. 49:343–349. https://doi.org/10.
1002/mnfr.200400095.

Barbiroli, A., A. Musatti, G. Capretti, S. Iametti, and M. Rollini.
2017. Sakacin-A antimicrobial packaging for decreasing
Listeria contamination in thin-cut meat: preliminary assess-
ment. J. Sci. Food Agr. 97:1042–1047. https://doi.org/10.
1002/jsfa.8120.

Barbosa-Cánovas, G. V., and Q. H. Zhang. (Eds.). 2019. Pulsed
electric fields in food processing: Fundamental aspects and
applications. CRC Press, Boca Raton, FL.

Barbosa-Cánovas, G. V., I. Medina-Meza, K. Candoğan, and D.
Bermúdez-Aguirre. 2014. Advanced retorting, microwave
assisted thermal sterilization (MATS), and pressure assisted ther-
mal sterilization (PATS) to process meat products. Meat Sci.
98:420–434. https://doi.org/10.1016/j.meatsci.2014.06.027.

Barkocy-Gallagher, G. A., T. M. Arthur, M. Rivera-Betancourt, X.
Nou, S. D. Shackelford, T. L. Wheeler, and M. Koohmaraie.
2003. Seasonal prevalence of Shiga toxin–producing
Escherichia coli, including O157: H7 and non-O157 sero-
types, and Salmonella in commercial beef processing plants.
J. Food Protect. 66:1978–1986. https://doi.org/10.4315/0362-
028x-66.11.1978.

Bauer, A., Y. Ni, S. Bauer, P. Paulsen, M. Modic, J. L. Walsh, and
F. J. M. Smulders. 2017. The effects of atmospheric pressure

cold plasma treatment on microbiological, physical-chemical
and sensory characteristics of vacuum packaged beef loin.
Meat Sci. 128:77–87. https://doi.org/10.1016/j.meatsci.
2017.02.003.

Bell, R. G. 1997. Distribution and sources of microbial contamina-
tion on beef carcasses. J. Appl. Microbiol. 82:292–300.
https://doi.org/10.1046/j.1365-2672.1997.00356.x.

Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E. D. A. Bekhit.
2019. Current and future prospects for the use of pulsed
electric field in the meat industry. Crit. Rev. Food
Sci. 59:1660–1674. https://doi.org/10.1080/10408398.2018.
1425825.

Bhavya, M. L., and H. Umesh Hebbar. 2017. Pulsed light process-
ing of foods for microbial safety. Food Quality and Safety.
1:187–202. https://doi.org/10.1093/fqsafe/fyx017.

Birk, T., and S. Knøchel. 2009. Fate of food-associated bacteria in
pork as affected by marinade, temperature, and ultrasound. J.
Food Protect. 72:549–555. https://doi.org/10.4315/0362-
028x-72.3.549.

Black, E. P., K. A. Hirneisen, D. G. Hoover, and K. E. Kniel. 2010.
Fate of Escherichia coli O157: H7 in ground beef following
high-pressure processing and freezing. J. Appl. Microbiol.
108:1352–1360. https://doi.org/10.1111/j.1365-2672.2009.
04532.x.

Bolton, D. J., T. Catarame, C. Byrne, J. J. Sheridan, D. A.
McDowell, and I. S. Blair. 2002. The ineffectiveness of
organic acids, freezing and pulsed electric fields to control
Escherichia coli O157: H7 in beef burgers. Lett. Appl.
Microbiol. 34:139–143. https://doi.org/10.1046/j.1472-765x.
2002.01063.x.

Borisov, S. M., and I. Klimant. 2009. Luminescent nanobeads for
optical sensing and imaging of dissolved oxygen. Microchim.
Acta. 164:7. https://doi.org/10.1007/s00604-008-0047-9.

Bosilevac, J. M., M. N. Guerini, N. Kalchayanand, and M.
Koohmaraie. 2009. Prevalence and characterization of salmo-
nellae in commercial ground beef in the United States. Appl.
Environ. Microb. 75:1892–1900. https://doi.org/10.1128/
AEM.02530-08.

Bover-Cid, S., N. Belletti, T. Aymerich, and M. Garriga. 2017.
Modelling the impact of water activity and fat content of
dry-cured ham on the reduction of Salmonella enterica by
high pressure processing. Meat Sci. 123:120–125. https://
doi.org/10.1016/j.meatsci.2016.09.014.

Brodowska, A. J., A. Nowak, and K. Śmigielski. 2018. Ozone in the
food industry: Principles of ozone treatment, mechanisms
of action, and applications: An overview. Crit. Rev. Food
Sci. 58:2176–2201. https://doi.org/10.1080/10408398.2017.
1308313.

Bruhn, C. M. 2007. Enhancing consumer acceptance of new
processing technologies. Innov. Food Sci. Emerg. 8:555–
558. https://doi.org/10.1016/j.ifset.2007.04.006.

Buckow, R., S. Ng, and S. Toepfl. 2013. Pulsed electric field
processing of orange juice: a review on microbial, enzymatic,
nutritional, and sensory quality and stability. Compr. Rev.
Food Sci. F. 12:455–467. https://doi.org/10.1111/1541-
4337.12026.

Byrne, B., J. G. Lyng, G. Dunne, and D. J. Bolton. 2010. Radio
frequency heating of comminuted meats-considerations in

Meat and Muscle Biology 2020, 4(2): 14, 1–18 Singh et al. Meat processing technologies

American Meat Science Association. 11 www.meatandmusclebiology.com

https://doi.org/10.1016/j.foodcont.2017.02.023
https://doi.org/10.1016/j.foodcont.2015.02.017
https://doi.org/10.1093/fqsafe/fyz002
https://doi.org/10.1093/fqsafe/fyz002
https://doi.org/10.1016/j.ifset.2017.09.017
https://doi.org/10.1002/pts.2366
https://doi.org/10.1002/pts.2366
https://doi.org/10.1016/j.ifset.2005.06.002
https://doi.org/10.1016/j.ifset.2005.06.002
https://doi.org/10.1002/mnfr.200400095
https://doi.org/10.1002/mnfr.200400095
https://doi.org/10.1002/jsfa.8120
https://doi.org/10.1002/jsfa.8120
https://doi.org/10.1016/j.meatsci.2014.06.027
https://doi.org/10.4315/0362-028x-66.11.1978
https://doi.org/10.4315/0362-028x-66.11.1978
https://doi.org/10.1016/j.meatsci.2017.02.003
https://doi.org/10.1016/j.meatsci.2017.02.003
https://doi.org/10.1046/j.1365-2672.1997.00356.x
https://doi.org/10.1080/10408398.2018.1425825
https://doi.org/10.1080/10408398.2018.1425825
https://doi.org/10.1093/fqsafe/fyx017
https://doi.org/10.4315/0362-028x-72.3.549
https://doi.org/10.4315/0362-028x-72.3.549
https://doi.org/10.1111/j.1365-2672.2009.04532.x
https://doi.org/10.1111/j.1365-2672.2009.04532.x
https://doi.org/10.1046/j.1472-765x.2002.01063.x
https://doi.org/10.1046/j.1472-765x.2002.01063.x
https://doi.org/10.1007/s00604-008-0047-9
https://doi.org/10.1128/AEM.02530-08
https://doi.org/10.1128/AEM.02530-08
https://doi.org/10.1016/j.meatsci.2016.09.014
https://doi.org/10.1016/j.meatsci.2016.09.014
https://doi.org/10.1080/10408398.2017.1308313
https://doi.org/10.1080/10408398.2017.1308313
https://doi.org/10.1016/j.ifset.2007.04.006
https://doi.org/10.1111/1541-4337.12026
https://doi.org/10.1111/1541-4337.12026
www.meatandmusclebiology.com


relation to microbial challenge studies. Food Control. 21:125–
131. https://doi.org/10.1016/j.foodcont.2009.03.003.

Cabeza, M. C., L. De La Hoz, R. Velasco, M. I. Cambero, and
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Morgan, D. A. Cronin, and J. G. Lyng. 2011. Effectiveness
of high intensity light pulses (HILP) treatments for the control
of Escherichia coli and Listeria innocua in apple juice, orange

Meat and Muscle Biology 2020, 4(2): 14, 1–18 Singh et al. Meat processing technologies

American Meat Science Association. 15 www.meatandmusclebiology.com

https://doi.org/10.1016/j.meatsci.2013.07.034
https://doi.org/10.1016/j.meatsci.2013.07.034
https://doi.org/10.1016/j.fm.2016.10.030
https://doi.org/10.1016/j.fm.2016.10.030
https://doi.org/10.1088/1367-2630/5/1/341
https://doi.org/10.1088/1367-2630/5/1/341
https://doi.org/10.3389/fmicb.2017.00113
https://doi.org/10.3389/fmicb.2017.00113
https://doi.org/10.1016/j.foodcont.2010.09.004
https://doi.org/10.1016/j.foodcont.2010.09.004
https://doi.org/10.1016/j.tifs.2015.03.005
https://doi.org/10.5829/idosi.gv.2012.9.3.1827
https://doi.org/10.1016/j.foodcont.2012.07.019
https://doi.org/10.1016/j.foodcont.2012.07.019
https://doi.org/10.1016/j.jfoodeng.2005.06.052
https://doi.org/10.1016/j.jfoodeng.2005.06.052
https://doi.org/10.1007/s12393-013-9064-5
https://doi.org/10.1007/s12393-013-9064-5
https://doi.org/10.1016/j.ifset.2009.11.007
https://doi.org/10.4315/0362-028X.JFP-10-338
https://doi.org/10.4315/0362-028X.JFP-10-338
https://doi.org/10.4315/0362-028X.JFP-17-509
https://doi.org/10.4315/0362-028X.JFP-17-509
https://doi.org/10.3390/v10040205
https://doi.org/10.1021/jf401818u
https://doi.org/10.1016/j.fm.2008.01.004
https://doi.org/10.1016/j.egypro.2014.07.175
https://doi.org/10.1089/fpd.2017.2393
https://doi.org/10.1089/fpd.2017.2393
https://doi.org/10.1016/j.foodres.2016.02.018
www.meatandmusclebiology.com


juice and milk. Food Microbiol. 28:14–20. https://doi.org/10.
1016/j.fm.2010.07.023.

Pandiselvam, R., S. Subhashini, E. P. Banuu Priya, A. Kothakota,
S. V. Ramesh, and S. Shahir. 2019. Ozone based food pres-
ervation: A promising green technology for enhanced food
safety. Ozone-Sci. Eng. 41:17–34. https://doi.org/10.1080/
01919512.2018.1490636.

Pankaj, S. K., C. Bueno-Ferrer, N. N.Misra, V.Milosavljević, C. P.
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