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 Abstract 

Guided waves have been widely used in different fields of 
engineering, such as non-destructive evaluation, seismology 
and oil & gas. Successful applications of guided waves are 
dependent upon thorough understanding of their modal 
properties. However, the prediction of the behavior of guided 
waves could be challenging for complicated waveguides, for 
example embedded/immersed waveguides with significant 
energy leakage, anisotropy waveguides with mode coupling 
effect and prestressed waveguide with acoustoelastic behavior. 
In this paper, we develop a generalized tool to study the modal 
properties of complex waveguides using semi-analytical finite 
element (SAFE) method. It is based on acoustoelastic equations 
with an option to add perfectly matched layers for open 
waveguides. The model is implemented into a commercial 
software package, providing easy access for a wide range of 
researchers. The model is first validated by well-established 
solutions in the literature, and then applied to a few practical 
cases in different fields, demonstrating its great potential in 
guided wave applications. 
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1. INTRODUCTION 

Guided waves have been widely used in various branches 
of engineering scenarios, such as non-destructive evaluation 
(NDE), where guided waves are used to inspect defects; 
seismology, in which elastic surface waves are applied for 
mantle tomography and oil & gas, where both Stoneley wave 
and pseudo Rayleigh wave are employed for borehole acoustic 
logging. Successful applications of guided waves mostly rely 
on the thorough understanding of modal properties of the 
guided waves. However, precise prediction of guided wave 
behavior is difficult for complex waveguides. The 
complications include waveguides being embedded/immersed 
in another media leading to significant energy leakage, material 
elastic anisotropic nature causing mode coupling effect and 
prestress in the media resulting in acoustoelasticity. 

A number of techniques have been proposed to provide a 
potential to address the complications. For example, artificial 

surrounding layers[1] (e.g. absorbing layer, boundary element 
and perfectly matched layer) were developed to simulate the 
infinite surrounding media within a finite domain. A six-
dimensional formalism was proposed by Stroh[2] to study 
Rayleigh wave propagation in anisotropic media, and 
perturbation theory[3] was commonly used to study the effect of 
prestress on guided wave propagation. However, most of the 
studies mentioned above are only applicable to specific cases, 
and a comprehensive method still remains to be unachieved.  

In this paper, a semi-analytical finite element (SAFE) 
based guided wave model is developed in order to study the 
modal properties of guided waves under complicated 
conditions. The model starts with acoustoelastic equations and 
combines perfectly matched layer, which make it possible to 
simulate open waveguides. The model is implemented into a 
commercial software package providing an easily accessible 
approach for the study of guided waves.  

 
2. MATHEMATICAL FRAMEWORK 

The mathematical model starts with acoustoelastic 
equations and combines the governing equations of perfectly 
matched layer.  

 
2.1 Acoustoelastic equations 

By using the acoustoelastic equations, three assumptions 
are adopted: (1) the material is characterized by Murnaghan 
material mode, where both second and third order elastic 
constants are considered; (2) the pre-deformation is small and 
the material remains elastic so that the relationship between the 
initial stress and initial strain can be approximated by Hooke’s 
law; (3) the amplitude of the elastic wave propagation in the 
material is much smaller than the pre-deformation.  

The governing equation of the acoustoelastic wave with 
respect to the initial state is given by 
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where 
iρ  is the density in the initial frame which is a 

function of initial strains and it is related to 
0ρ  and the 

dilatation 
i
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where IJKLc  and IJKLMNc  represent the second and third 

order elastic constants, respectively; 
i
Iu  demonstrates the 

initial displacement from the natural state to the initial state and 

the 
i
MNe  is the component of the initial Cauchy strain tensor. 

 
2.2 Perfectly matched layer 

The concept of PML was first created by Bérenger[4] in the 
context of electromagnetic waves and then it was shown that 
the PML equations result from a complex-valued coordinate 
stretching in the electromagnetic wave equations. The same 
ideas are immediately applicable to elastic wave equations. The 
stretched coordinates in the waveguide are defined as 
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where 1x , 2x  and 3x  denote the stretched coordinates. 
( )1 1xγ

, ( )2 2xγ
 are non-zero, continuous, complex-valued 

coordinate stretching function. 
 
2.3 Implementation of the governing equations into a 
commercial software package 

The governing equation of the system can be written into a 
commercial finite element method package. In the package, the 
input formula for eigenvalue problems has the general 
expression as 
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in which u  represents the set of variables to be determined; 
the various coefficients from the input formula do not have any 
particular meaning except that they represent functions of the 
parameters of the problem investigated. 
 
3. VALIDATIONS AND APPLICATIONS 

In this section, one example case is shown to validate the 
developed model. 

This example simulates Rayleigh surface wave propagation 
in a semi-infinite half space which is subjected to a depth-
varying stress in near-surface area, and it was solved in the 
literature by perturbation method[3]. To model the propagation 
of the waves along an infinitely wide space, a narrow strip of 
the structure with periodic boundary condition (PBC) are used 
to represent continuity of displacements and stresses between 
the two edges, as shown in Fig. 1. The narrow strip of the 
structures is 1 mm in width, and the thickness of the space is set 
to be 400 mm, which is larger than one wavelength of Rayleigh 
wave. A 1-mm-thick PML is attached to the strip to simulate 
the semi-infinite half space. 

A depth-varying static compressive stress having isotropic 
in-plane components ( )11 33 2

S S S xσ σ σ= =  and null vertical 

component 33 0Sσ =  is applied in the near-surface region. The 
amplitude of the static stress is scaled to material’s bulk 

modulus 
2
3

K λ µ= +  and 10 mmH = . In the 

simulation, four kinds of material, including aluminum, steel, 
the titanium alloy Ti-6426 and glass are chosen for being 
representative of a wide panel of industrial uses. All the 
material properties are given in Table I. 

 
Table I. Material properties used in the calculations. 
 ρ (g/cm3) λ  μ l m n 

(GPa) 
Ti 4.54 80.0 45.5 -201 -272 -356 
Si 2.28 18.8 26.8 29 14.7 -26.8 
Al 2.8 54.9 26.5 -252.2 -324.9 -351.1 

Steel 7.8 115.8 79.9 -248 -623 -714 
 
Figure 2 shows variation of velocity of the Rayleigh 

surface wave in different material subjected to the depth-
varying stress. The velocity change is calculated by computing 
the difference between the velocity when the material is 
subjected to the applied stress and the velocity when the 
material is free of the applied stress. It can be seen that the 
results from the method developed in this paper agree very well 
with the solutions from perturbation method[3]. 
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Figure 1: Schematic of the SAFE model for a semi-infinite half 
space subjected to a depth-varying static stress. 
 

Some features can also be obtained from the results. It can 
be seen that the variation of velocity of the Rayleigh varies with 
frequencies and the variation of velocity becomes zero at very 
low and very high frequencies.  

 

 
Figure 2: Variation of velocity of Rayleigh wave induced by a 
depth-varying compressive static stress profile localized in the near-
surface region, in different materials. 
 
4.  CONCLUSION 

A SAFE based guided wave model has been developed to 
study modal properties of guided waves in complex 
waveguides in a wide range of industries. The solutions from 

the model are compared with well-established solutions, 
showing excellent agreement. Our model provides a generic 
tool for the development of guided wave based techniques. 
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