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ABSTRACT 
Quantitative characterization of impact damage in polymer 

matrix composite panels is desired to inform the initial 

conditions of damage evolution models for subsequent 

mechanical loading. Previous work from the authors focused on 

predicting X-ray Computed Tomography data from Ultrasonic 

Testing data to produce a 3D representation of the damage. The 

predicted damage with this approach contained artifacts near 

matrix cracks, the tips of delaminations, and damage occluded 

by the topmost delaminations. In this work, a data fusion 

approach is developed to segment the damage using both sets of 

data directly. This ‘data fusion’ approach involves the training 

of a classifier using both UT and XCT data as inputs and 

predicting damage/no damage as the output. Details of the model 

and data processing are described, along with the resulting 

segmentation. 
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NOMENCLATURE 
PMCs  Polymer Matrix Composites 

BVID  Barely-Visible Impact Damage 

XCT  X-ray Computed Tomography 

UT   Ultrasonic Testing 

 

1. INTRODUCTION 
Polymer-matrix composites (PMCs) subject to impact 

events may contain barely-visible impact damage (BVID). This 

presents challenges to the lifecycle management of composite 

structures. Improved 3D characterization of damage can enable 

accurate modelling of damage evolution [1,2], a requirement for 

implementing a damage tolerance approach for PMCs [1]. X-ray 

Computed Tomography (XCT) can produce 3D characterizations 

of damage, but imaging constraints can limit contrast and 

resolution and prevent characterization of small damage 

features. Ultrasonic testing (UT) in normal-incidence inspections 

can provide high depth resolution, but some features are not 
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resolved because they are occluded by features at a shallower 

depth. Several recent efforts [3-5] investigated the use of oblique 

angle incidence UT inspection data for 3D damage 

characterization. Prior work by the authors [6] described the use 

of supervised learning to predict XCT data from UT data. The 

approach produced 3D damage that contained some of the 

aspects of both UT and XCT data, including improved ability to 

resolve the presence of delaminations farther from the impact 

site that were too thin for XCT alone to characterize. However, 

the approach also produced many undesirable artifacts in the 

predicted damage, including noise at the tips of delaminations, 

noise at the locations of matrix cracks, and non-physical 

predictions of delaminations in lower regions occluded by upper 

delaminations, as seen in Figure 1.  

 

 
   

FIGURE 1: COMPARISON OF ACTUAL (ABOVE) AND 

PREDICTED XCT DATA FROM UT DATA (BELOW) [6] 

 

This work describes a new approach for characterization of 

BVID that uses both XCT and UT data with modern data fusion 

methods. 
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2. MATERIALS AND METHODS 
The polymer matrix composite (PMC) panel under study 

was a 24-ply layup of IM7 carbon fiber 977-3 polymer matrix 

plies. The plies were stacked according to the sequence [-

453/903/453/03]s. The dimensions of the panel are 101.7 mm x 

152.5 mm x 3.245 mm (4” x 6” x 1/8”). The panel was subjected 

to a drop tower impact test at 10 J, resulting in barely visible 

impact damage (BVID). 

 

2.1 X-ray Computed Tomography of PMC BVID 
The BVID was characterized with XCT with details found 

in [6]. This resulting reconstruction is 68.2 mm on each side, 

with a voxel length of 66.7 µm.  

 

2.2 Ultrasonic Testing of PMC BVID 
The damage was also characterized with normal incidence 

pulse-echo UT in an ultrasonic inspection system, with details 

according to [6]. The resulting UT data set was 154 mm x 102.4 

mm x 20 µs, with a spatial resolution of 0.4 mm and time 

resolution of 0.01 µs. 

 

2.3 Comparison of the Data 
Segmentation of the damage with a classifier at the voxel 

level for the XCT data is shown in Figure 2 along with a time-

of-flight (TOF) C-scan from the UT data for the same region of 

the panel. 

 

   
XCT   UT 

FIGURE 2: COMPARISON OF SEGMENTED XCT DATA AND 

TOF UT DATA 

 

It is readily observed that the segmented XCT data contains 

delaminations and matrix cracks throughout the volume of the panel. 

Also, the UT data captures more of the extent of the delaminations than 

the segmented XCT data. This is because near the outer edges of the 

damage, the delaminations become thinner than the XCT system is 

capable of resolving. However the UT data is missing other 3D 

information about the presence of matrix cracks and hidden 

delaminations. Neither modality captures the full extent of the damage. 

 

2.4 Data Fusion for XCT and UT Damage 
Characterization 

Key to advanced data fusion is the concept of ‘diversity’ [7] 

within the data. Diversity refers to parts of the data providing 

‘unique’ information not present in other parts of the data. The 

spatially-registered XCT and UT data is an example of 

multimodal data and contains diversity. There are many 

approaches to data fusion, including data integration, processing 

modalities sequentially, and true fusion [7]. An example of data 

integration would be developing a classifier for each modality 

and applying some decision strategy to the output of each 

classifier to determine a final class for each voxel. An example 

of processing modalities sequentially involves using one data set 

to constrain a classifier applied to the other data – this approach 

was used in [6]. The data fusion approach used in this work is 

true fusion, specifically true fusion using multivariate features. 

The true fusion approach amounts to using features from 

multiple modalities as inputs to a single classifier. 

As depicted in Figure 3, the true fusion method involves 

extracting features from both the UT and XCT data, some of the 

voxels are labeled, and they are used train a kernel classifier (an 

extension of kernel regression [8-9] for classification) to 

segment the damage in the remaining voxels.  

 

 
FIGURE 3: TRUE FUSION APPROACH FOR SEGMENTATION  

 

The features extracted can include the raw data, local means, 

medians, variances, and higher order features such as edges, 

shapes, gradients, etc. through the use of convolving various 

filters of different sizes, shapes, and types (such as Sobel, 

Laplacian, etc.). Others include gated time of flight and max 

amplitude. These will be explored and discussed in the 

associated presentation. 

The proposed approach is an example of supervised learning 

[10] that is similar to but distinct from that used in [6] which 

involved a sequential processing of the modalities. Once the 

damage has been segmented, further quantitative 

characterization of sizes, shapes, and statistics of damage can be 

carried out [6,11]. 

 

3. RESULTS AND DISCUSSION 
The new classifier and resulting segmentation of the damage 

will be presented at the conference. An example of the 

segmented damage using the sequential data fusion approach in 

the previous work is presented in Figure 4. 
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FIGURE 4: SEGMENTED DAMAGE USING DATA FUSION 

APPROACH 
 

4.  CONCLUSION 
In this work, we demonstrated the use of modern data fusion 

methods for X-ray Computed Tomography data and Ultrasonic 

Testing data. A classifier was developed using features extracted 

from XCT and UT data as inputs, and predicting as output 

whether each voxel was air, damage, or undamaged PMC. We 

anticipate the segmented damage using these techniques to be a 

significant improvement over the previous results in [6], because 

rather than using one modality to constrain the results of another 

modality, we are using both NDE modalities in a manner in 

which they can interact to better inform the decision for each 

voxel. 
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