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ABSTRACT 
Bearing faults is one of the primary causes of motor failure. 

Due to the frequency of occurrence and high risk associated with 

intrinsic components, identification and characterization of 

bearing faults via nondestructive evaluation (NDE) methods 

have been studied extensively and vibration analysis has been 

found to be a promising technique for early detection. However, 

majority of the existing techniques rely on vibration sensors 

attached onto or in close proximity to the motor in order to 

collect signals with a relatively high SNR. Due to weight and 

space restrictions, these techniques cannot be used in unmanned 

aerial vehicles (UAV), especially during flight since 

accelerometers cannot be attached to motors in small UAVs. 

Inertial measurement units (IMUs) attached to the body frame of 

a UAV measure vibrations experienced by the entire UAV due to 

multiple factors such as weather conditions, control system 

characteristics, or propeller imbalances. Hence bearing fault 

signatures get buried under noisy signals. This paper presents a 

detailed discussion of typical challenges faced with in-flight 

detection of bearing failure in UAVs using existing sensors and 

offers potential solutions to bridge the gap of research in the 

current state-of-art.  
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1. INTRODUCTION 
The integration of small unmanned aerial vehicles (UAVs) for  

delivery of goods and medical supplies, surveillance, weather 

monitoring, precision agriculture, and many other applications is 

expected to change the national airspace [1, 2]. A systematic 

approach is thus required for diagnosis and prognosis of UAV 

health in order to enable efficient and safe operations of the low-

altitude airspace. One of the critical components in UAV systems 

are the motors that consist of movable parts called bearings 

which undergo fatigue over time leading to motor failure. 

Current practice for ensuring safety of the motors includes a 

prescribed pre-flight and post-flight inspection of the UAV 

followed by replacement of the bearing parts if a motor is ‘felt’ 

to be warmer or noisier than its counterparts [3]. Although 

bearings, like any component undergoing fatigue, are not 

supposed to fail instantaneously in a short flight of 1-2 hours,  
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lack of in-flight monitoring and highly subjective nature of the 

prescribed checks occasionally lead to unprecedented motor 

failures [4]. Besides, external environmental factors such as 

moisture or dirt could affect the motion of a bearing during a 

UAV flight.  A failed motor is often detrimental since space and 

weight restrictions do not allow for redundant motors on a small-

sized UAV. As a result, current practice relies on periodic 

replacement of parts which is not only cost inefficient but risks 

continued use of damaged motors in a UAV. 

Majority of existing research [5-6] validates bearing fault 

detection methods on experimental vibration data from health 

monitoring testbeds wherein accelerometers are attached to the 

motor frame. This paper presents an overview of existing 

studies on bearing fault detection on such datasets. Further, 

typical accelerometer signals measured by an IMU from a UAV 

flight with faulty bearings are depicted and compared with lab 

data. Features from faulty bearings are extracted based on time-

frequency representation and a possible in-flight detection 

approach is demonstrated.  

 

2. BEARING FAULT DIAGNOSIS IN IMS DATA 
In order to study the real defect growth process in industrial 

machinery, bearing run-to failure tests were performed by the 

Center for Intelligent Maintenance Systems (IMS) at the 

University of Cincinnati, under normal load conditions on a 

specially designed test rig [6]. The test rig consisted of four 

bearings on one shaft driven by an AC motor. Accelerometers 

were attached onto each bearing using adhesives, as depicted in 

Fig. 1.  

 
FIGURE 1. Schematic of bearing test rig from IMS [5]. 
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The vibration data for all four bearings along with additional 

details of the test set up is available in the NASA Ames 

Prognostic Center of Excellence dataset repository [7]. Vibration 

data was collected every 20 minutes at a sampling rate of 20 kHz 

by a National Instruments DAQCard-6062E data acquisition 

device. Damage to the rolling ball in bearing 4 took 35 days to 

mature from its healthy state to complete failure. Since bearings 

are rolling components, any damage in the bearing shows up as 

a periodic pattern in the vibration signal which can be extracted 

from its frequency spectrum. Vibration signals from the 

accelerometer attached to bearing 4 are depicted in Fig. 2. The 

corresponding power spectral density (PSD) at different 

frequency components indicates clear distinction between the 

healthy and faulty bearing. 

 

 
FIGURE 2. Vibration signal from bearing 4 and its power spectral 

density at different frequency components: (a)-(b) healthy (c)-(d) at 

failure. 

In order to study the damage propagation over the entire 35 

days, the PSD of the vibration signal was computed and then the 

7 frequencies with highest PSD values were plotted in Fig. 3. It 

can be observed that the most damage growth signatures are 

captured by the 5th, 6th and 7th frequencies and not by the highest 

PSD frequencies since the defect information is suppressed by 

the natural modal components of the bearing in them.  

        
FIGURE 3. Power density at first 7 peak frequency components of 

bearing 4 vibration data. 

Bearings exhibit a weak degradation trend for the majority 

of their life until there is an abrupt indication of fault towards 

end-of-life (EOL). As a result, although peak frequencies and 

associated PSD values may be sufficient features to discriminate 

bearing health at the beginning and end of its life, classification 

using these features during shorter time periods within the life 

cycle becomes challenging. Fig. 4 represents the feature space 

formed by 5th-10th highest PSD values for 6 to 3 hours before 

EOL of the faulty bearing. It can be observed that these features 

overlap during this period. Since we are interested in the bearing 

health degradation in a UAV flight which typically lasts for a 

short time period of 1-2 hours, these features of the vibration 

signal are deemed not suitable for in-flight diagnosis of bearing 

faults. 

 
FIGURE 4. Feature space for classifying different states of health of 

bearing within 3-6 hours of its EOL. 
 

3. BEARING FAULT DIAGNOSIS IN UAV SYSTEM  
The goal of our study is to diagnose bearing damage using 

existing sensors from commercial models of UAVs without 

having information of the motor’s state of health at the beginning 

of the flight. UAV flight experiments were performed at the 

NASA Langley Research Center on DJI S-1000 octocopter with 

faulty bearings on one of the motors. The UAV flights in the 

experiment were safely stopped before the bearing reached total 

failure in order to avoid an incident or damage to the UAV. 

Unexpected noise during the flight indicated degradation of 

motor health which was later identified as bearing faults from 

offline inspection. Experimental data from inertial measurement 

units (IMUs) comprising accelerometer, gyroscope, and 

magnetometer, installed on the body of the UAV is analyzed in 

this study for detection of bearing failures.  

 
(a) 

 
(b)  

FIGURE 5. Accelerometer data in x-direction from (a) healthy 

UAV flight (b) UAV with faulty bearing. 
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Fig. 5 depicts vibration signals along the x-direction as 

measured by the accelerometer for (a) a healthy UAV and (b) a 

UAV with faulty bearings.  

  
(a)                                    (b) 

FIGURE 6. Frequency-power density features at different time 

windows of (a) healthy and (b) faulty bearing signal. Red: 0-500 sec, 

Blue: 501-1000 sec, Green: 1001-1500 sec, Black: 1501-2000 sec, 

Pink:2001-2500 sec. 

 

Features similar to those used in the IMS data analysis were 

extracted from the accelerometer data. For generating the feature 

space in Fig. 6, the entire flight of 2500 seconds was divided into 

5 sections of 500 seconds each whose features are respectively 

denoted by red, blue, green, black and pink colors starting from 

beginning to end of flight. Each section is further segmented into 

4 windows of 125 seconds each. The PSD was computed for each 

windowed signal and the 5th-10th frequencies with highest PSD 

values were plotted with a set of symbols of a particular color in 

Fig. 6.  A set of four consecutive windows are marked using the 

same color in the plot representing the 5 sections of the entire 

time-signal. The red markers indicate features from the initial 

500 seconds (~8 min) of the UAV flight whereas the pink 

markers indicate the last 8 minutes of the UAV flight (bearing 

fault indications are present during this time window). In the 

healthy UAV, no discrimination is observed between features 

from beginning and end of the flight whereas in Fig. 6(b), when 

the UAV experiences a faulty bearing towards the end of its 

flight, features denoted by black and pink colors show some 

separation with features extracted from previous sections of the 

signal.  

In order to improve feature separation and therefore 

detection capability using on-board sensors, data from the 

gyroscope is analyzed in addition to the accelerometer power 

densities. Gyroscopes measure the rotational vibration of the 

UAV along its x, y, and z axes. The motivation behind using 

gyroscope data as an additional feature is that if one motor in a 

UAV fails, the angular motion of the UAV body along its axis 

will be affected instantaneously before the control system can 

restabilize and control. Figure 7 represents the PSD signals for 

the same two UAV flights in an accelerometer-gyroscope feature 

space, with color assigned according to same time windowing 

used in Figure 6. It can be concluded that in a healthy state, the 

PSD-frequency features from both accelerometer and gyroscope 

form tight clusters whereas once the bearing begins to show 

indications of failure, the features become an outlier to existing 

clusters. Detection of outliers in the feature space can be an 

indication of a potential faulty bearing during the UAV flight.  

 

4.  CONCLUSION 

This paper presents a comparison of bearing fault diagnosis 

methods on a public dataset and from flight experiments on 

commercial UAVs with known faulty bearings. NDE diagnostic 

methods, which have been validated on public datasets, cannot 

be directly implemented for in-flight detection of bearing faults 

in UAVs. In this paper, we utilize gyroscope data as an additional 

feature and demonstrate the analysis on the UAV flight data. It 

is important to note that unsupervised learning methods should 

be employed since the pre-flight motor health may be unknown 

and no training data may be available.  

As a future direction of this research, data from other sensors 

in the UAVwill be investigated for identifying early indication 

of a degrading motor bearing. Other time-frequency 

representations such as matching pursuit decomposition or 

wavelets can be employed to extract suitable damage-sensitive 

features. 

  
(a)                                            (b) 

FIGURE 7. Accelerometer-Gyroscope PSD features at different 

time windows of (a) healthy and (b) faulty bearing signal. 
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