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ABSTRACT 
An optimization method is studied to enhance the reliability 

of TFM (Total Focusing Method) images in anisotropic nuclear 

materials. The method is able to adapt to a given anisotropic 

structure (weld, cladded steel) when the parameters governing 

the wave propagation are uncertain. The optimization scheme 

combines a surrogate model to bypass the extensive computation 

times of the propagation forward model, and a gradient descent 

algorithm to minimize a multivariate cost function. The gradient-

based optimization is compared with a global optimization tool, 

the Particle Swarm algorithm. Finally, the parameters (stiffness 

constant, grain orientation, cladding thickness…) corresponding 

to the optimal TFM image are compared with those measured by 

other characterization techniques. 
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1. INTRODUCTION 
Ultrasonic inspection of coarse-grained materials, castings 

and austenitic welds commonly found in nuclear installations is 

one challenging problem in NDT, in particular due to the a priori 

uncertainties on the microstructural characteristics. Several 

approaches have been proposed in the literature, to deal with 

these uncertainties especially in the case of austenitic welds.  

One common approach to deal with these uncertainties consists 

in the adjustment of the parameters of a welding description 

model with iterative optimization procedures based on simulated 

signals or fast ray-tracing algorithms. Generally, the weld map is 

obtained with a pre-characterization step before imaging and 

involves a specific experimental setup [1]. Another approach 

relies on the prior knowledge of a reflector inside the medium, 

which serves as standard to an optimization scheme that 

improves the reliability of images based on some well-chosen 

quality estimators [2]. Thus, imaging and characterization of 

welds are two simultaneous processes requiring only one 

experimental setup. The method presented hereafter relies on this 
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latter strategy, except that the reflector properties are not 

assumed to be known at the time of inspection. 

The work presented in this communication is achieved in the 

framework of the European project ADVISE. It aims to develop 

optimization algorithms for TFM (Total Focusing Method) 

imaging of anisotropic materials without prior information on 

their properties. The optimization procedure is based on an 

iterative local (Gradient Ascent) or global (Particle Swarm) 

algorithm which maximizes a multivariate cost function defined 

from image-quality estimators. Each iteration step updates the 

material properties to provide new images until convergence 

criteria are satisfied. The optimization method requires a single 

set of experimental data to form a large number of TFM images. 

The times of flight needed for TFM imaging are computed from 

the ray-tracing algorithm of the CIVA software. In order to 

reduce the computation times, a surrogate model is used to 

bypass the imaging algorithm. 

In this communication, we illustrate this method on 

experimental data acquired on various mock-ups: cladded 

components and anisotropic welds of varying degrees of 

complexity. Extracted properties from the optimization method 

are compared with those measured by other characterization 

technics (ultrasound, X rays, EBSD…). 

 
2. PRINCIPLE OF THE ADAPTIVE IMAGING 

Let us consider a specimen where the wave propagation is 

strongly influenced by its anisotropic properties. One can define 

a number Q of critical parameters to which the TFM images are 

sensitive. For instance, in an austenitic weld described by the 

Ogilvy parametric model, the grain orientation gradient and the 

elastic tensor may be critical parameters. In the case of a stainless 

steel cladding, assumed to be anisotropic and homogeneous, 

images are sensitive to the cladding elastic properties and 

thickness. When the values of those parameters are uncertain, the 

TFM images can be significantly degraded (low signal-to-noise 

ratio, positioning errors, false calls…). In those cases, the 

implementation of an optimization algorithm can be helpful.  
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A criterion is needed to define the accuracy of the computed 

image when imaging a potential defect. The descriptor 

considered in this study is the maximum amplitude of the TFM 

image, noted Amax. Indeed if the material parameters are 

misestimated, the recorded signals do not focus to well-form the 

defect echo, decreasing the Amax value. 

The proposed optimization scheme is an iterative process 

whose initial step assumes an isotropic medium. A surrogate 

model is implemented to interpolate a Q-dimension database of 

experimental images, saving costly forward computations of 

images at each optimization step. The Kernelized Ridge 

Regression (KRR) combines the advantages of the Kernel Trick 

with a Ridge Regression [3], overcoming the curse of 

dimensionality encountered in the studied cases. The KRR 

consists in the minimization: 

 

min (
𝒘

‖𝑿𝒘 − 𝒀‖2 + 𝜆‖𝒘‖2).                 (1) 

 

𝒘 are the model weighting coefficients, designed by a chosen 

kernel, 𝑿 and 𝒀 are the input and output parameters of the model, 

respectively. The regularizing term 𝜆 penalizes the variance 

of 𝒘. In the present case, the KRR model well predicts the 

Amax-estimator for a selected database within specified dataset 

limits. 

After interpolating the database, this study investigates the 

ability of two different algorithms to produce optimized images. 

The first algorithm is a modified Gradient Ascent Optimization 

(GAO): 

 

𝑿𝑗+1 = 𝑿𝑗 + 𝜂𝑗𝛁f(𝐗𝑗),                          (2) 
 

with 𝜂𝑗  the learning rate at step 𝑗 of the gradient ascent, which 

follows a decaying law as 𝑗 increases. To ensure a reliable 

convergence, the decaying learning rate is associated with a 

periodic warm restart similar to what is presented in [4]. The 

gradient is locally computed using centered finite differences. 

The second algorithm is a classical Particle Swarm Optimization 

(PSO) [5], where each randomly initialized particle of the swarm 

obeys: 

 

𝑿𝑗+1 = 𝑿𝑗 + 𝑽𝑗+1 ,                         (3) 

 

where 𝑽𝑗+1 is the inertia of the particle at step 𝑗 + 1: 

 

𝑽𝑗+1 = 𝛼𝑽𝑗 + 𝛽(𝑷𝑖 − 𝑿𝑗) + 𝛾(𝑷𝑔 − 𝑿𝑗) .    (4) 

 

The 𝑷𝑖 and 𝑷𝑔 points respectively correspond to the best particle 

and to the best swarm positions. The 𝛼, 𝛽 and 𝛾 coefficients are 

chosen in order to penalize or not the displacement of a particle 

with respect to 𝑷𝑖 and 𝑷𝑔. The convergence is assumed when 

particles communicate with each other while traveling across the 

quasi-concave Q-dimension space. The PSO algorithm was also 

implemented to assess that GAO algorithm correctly converges. 

 

 
 
3. RESULTS AND DISCUSSION 

The optimization algorithms were evaluated on two mock-

ups. The first mock-up is a ferritic steel bloc with an austenitic 

cladding, and the second one is a large weld mold (provided by 

Electricité de France, EDF), whose dimensions exceed the array 

aperture. Both experimental setups are schematized in Fig. 1. In 

the two cases, the optimization problem is simplified as the 

materials are considered orthotropic and homogenous and the 

surface geometries are planar. The FMC data were recorded with 

a linear transducer array, assuming a 2D wave propagation 

problem, thus reducing to only 4 elastic components to account 

for anisotropy. 

In addition to the elastic parameters, the thickness ℎ of the 

austenitic cladding and the grain orientation 𝜃 in the weld mold 

must also be optimized, as it remains uncertainties about their 

true values. 

 

   
 

    
 

FIGURE 1: INSPECTION OF A CLADDED COMPONENT 

(TOP) AND AN AUSTENITIC WELD (BOTTOM) WITH A 

CONTACT LINEAR ARRAY 
 

The TFM images computed before (isotropic assumption) 

and after the optimization procedure are given in Fig. 2 for the 

cladded component and in Fig. 3 for the weld mold. For both 

materials, the images are issued from the GAO (the images 

obtained from the PSO algorithm being identical). A comparison 

between the values of the 5 optimized parameters and their 

reference values obtained with other measurement techniques is 

given in Fig. 4. 
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FIGURE 2: TFM IMAGES IN THE CLADDED COMPONENT 

WITH AN ISOTROPIC RECONSTRUCTION MODEL (LEFT) AND 

WITH THE GRADIENT-BASED OPTIMIZATION METHOD 

(RIGHT) 
 

  
FIGURE 3: TFM IMAGES IN THE WELD MOLD WITH AN 

ISOTROPIC RECONSTRUCTION MODEL (LEFT) AND WITH 

THE GRADIENT-BASED OPTIMIZATION METHOD (RIGHT) 

 
 

  
 

  
FIGURE 4: COMPARISON BETWEEN THE REFERENCE 

AND OPTIMIZED NORMALIZED VALUES OF THE 

PARAMETERS DESCRIBING THE CLADDING LAYER (TOP) 

AND THE WELD MOLD (BOTTOM) 

The results in Figs. 2 and 3 show a tremendous improvement 

of the TFM images after optimization with the GAO algorithm. 

The phenomenon of splitting echoes is corrected and the position 

of each echo is very close to the position of the corresponding 

defect, making this tool appropriate for adaptive imaging. 

The elastic parameters issued from the GAO and PSO 

results are compared in Fig. 4 to the values given by independent 

characterization methods and considered as reference values (the 

optimized values are normalized by the reference ones). It 

appears that the parameters issued from GAO and PSO are 

mostly close to the reference ones. For example, as regards the 

weld properties, the estimation of C33 gives 205 and 215 GPa 

with GAO and PSO, respectively, while the reference value is 

210 GPa.  

Despite differences in the estimation of parameters C13, C55 

and 𝜃, it has been observed that both algorithms produce almost 

identical images. The differences between these values are due 

to the non-uniqueness of the solution as the problem is ill-

conditioned 

 

4.  CONCLUSION 
This study demonstrates the feasibility of an adaptive 

procedure for TFM imaging in the case of uncertainties on the 

elastic properties of an anisotropic material. The results obtained 

here on homogeneous anisotropic materials are quite 

encouraging and the next step will be to test the method on more 

complex materials exhibiting inhomogeneous anisotropic 

properties. 
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