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ABSTRACT 
Guided waves in an elastic plate are called forced-guided 

waves if they are generated by body forces and/or surface 

tractions. The normal-mode expansion method has been used 

extensively by numerous researchers and practitioners to solve 

for such forced-guided wave problems in plates. Using 

horizontally polarized shear waves as examples, this paper 

demonstrates that solutions from the normal-mode expansion 

method often do not describe fully the actual elastodynamic field 

in the plate. To improve upon it, this paper further develops a 

modified normal-mode expansion method that yields solutions 

that satisfy all elastodynamic equations including the Hooke’s 

law and prescribed traction boundary conditions, thus providing 

a full description of the elastodynamic field in the plate. 

Keywords: modified normal mode expansion, forced guided 

wave, sheared horizontal wave 

 

NOMENCLATURE 
𝜌  density 

𝜇  elastic constant 

u  displacement 

𝜎  stress 

k  wavenumber 

𝜔  circular frequency 

i  unit of imaginary number 

 

1. INTRODUCTION 
Waveguide is a common device used in many engineering 

fields including optics, acoustics, microelectronics, etc. Guided 

waves can be generated in a waveguide by a distributed body 

force in and/or by tractions prescribed on the surfaces of the 

waveguide. Such guided waves are called the forced-guided 

waves. To solve for the forced-guided wave problems, Auld in 

his classic monograph [1] developed the normal-mode expansion 

(NME) method, which has been proven to be a powerful tool for 

solving forced guided wave problems in a plate. The method was 
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rederived rigorously by Kino in his 1987 book [2] with a focus 

on elastic waves. 

However, as well be shown in this paper, solutions from the 

classical NME method do not necessarily satisfy (i) the Hooke’s 

law and (ii) the prescribed traction boundary conditions. 

Therefore, they are not the exact elastodynamic solutions of the 

corresponding forced-guided wave problems. In fact, the 

classical NME solution could be very far off from the exact 

solution, by more than 50% in certain cases. To improve upon 

the classical NME method, we will develop in this paper a 

modified NME method that yields exact elastodynamics 

solutions in that they satisfy all governing equations and 

prescribed boundary conditions in elastodynamics. This paper 

will focus on the case of transversely polarized shear (SH) 

waves. The Rayleigh-Lamb waves will be discussed in a separate 

publication. 

 

 
2. PROBLEM STATEMENT 

An elastic plate with thickness 2h is considered in this 

problem. The xoy plane in a Cartesian coordinate system is used 

and 𝑦 = ±ℎ  are the surfaces of the plate. The plate is 

characterized by mass density 𝜌 and elastic constant 𝜇. 

 
FIGURE 1: SKETCH OF A PLATE WITH THICHNESS 2h. 

 

In the absence of body forces and surface traction, the free 

SH Modes in the plates can be written as [3], 

    mi k x t

mu u y e


  ,                (1) 

where u  is the displacement in the transverse direction, and 
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   cosm s mu y A y ,    sinm a mu y A y  (2) 

are the symmetric and anti-symmetric modes, respectively.  

In the above,  
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where, for convenience, we chose 
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 The shear stresses corresponding to (1) can be written as 

( ) mik x

m y eτ τ , where 

 ˆ( ) ( )m m my ik u y τ x , 
( )

ˆ( ) m
m

du y
y

dy
 τ y . (5) 

with x̂  and ŷ  being the unit normal vectors in the x- and y-

directions. Traction-free boundary conditions dictate that, 

 1mh m   , 
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, 1,2,3m   (6) 

for the symmetric and anti-symmetric modes, respectively. 

 

 

3. MODIFIED NORMAL MODE EXPANSION METHOD 
 To solve the forced-guided wave problem, it is convenient 

to decompose the body force and the surface traction into 

symmetric and anti-symmetric cases, which correspond to the 

symmetric and anti-symmetric modes, respectively. Only the 

symmetric case will be considered here. For brevity, we will 

consider only a special case where the plate is subjected to a non-

zero body force but zero-traction on the upper and lower 

surfaces, i.e.,  

 ( , )
2

rik xsf f x y e
h


  , ( ) ( ) 0sp x p x    , (7) 

where, for the purpose of this example, we assume that ( , )rk  

is not on any of the dispersion curves. For this problem, it can be 

easily verified that the exact solution is given by 
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where 1 Tk c  is the wavenumber of the first propagating 

symmetric mode. In other words, Eq. (8) satisfies the equation 

of motion, the Hooke’s law and the zero-traction boundary 

conditions. 

In the proposed modified NME method, we assume that 
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By applying the Hooke’s law, we obtain the corresponding shear 

stresses 
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where 
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We note that (10)-(11) differ from their counterparts in the 

classical NME method due to the additional term related to 

( )mA x .  

 Making use of (9)-(12) in the reciprocity equation [1], we 

arrive at a differential equation for ( )na x , 
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where 1,2,n N  , and 
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In the above, n Nk k  for propagating modes and n Nk k   

for evanescent modes.  

The solution of (13) gives, 
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Finally, the displacement follows from (9) 
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This is identical to the exact solution given in (8). In other 

words, the modified NME method gives the exact solution to this 

problem, as expected. 

 Next, let us use the classical NME method to solve the same 

problem. It can be shown that the classical NME method yields 
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Comparing (17) with the exact solution (8) gives the relative 

error in the classical NME solution,  
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Clearly, the error could be significant depending on how 

different rk  is from 1k . For example, if 12rk k , the error 

will be 50%  .  

 
4.  CONCLUSION 

It is shown in this paper that the solutions from the classical 

NME method often do not satisfy the Hooke’s law and the 

prescribed traction boundary conditions, therefore, do not yield 

the exact elastodynamic solution for the forced-guided wave 

problems. In certain cases, the classical NME solution could be 

significantly different from the exact solution. To improve upon 

the classical NME method, this paper developed a modified 

NME method that yields the exact solution for forced-guided 

wave problems. 
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