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ABSTRACT 
This paper presents a Convolutional Neural Network (CNN) 

based strategy targeting regression and classification tasks 

based on post-processed Guided Wave Imaging (GWI) images 

issued from a Structural Health Monitoring (SHM) 

configuration. The studied use-case is a network of piezo-electric 

sensors permanently integrated on a structure to inspect. A GWI 

process is applied to the propagated guided wavepackets 

between every pair of sensor to generate a picture representing 

the health of the inspected region. If such image provides to an 

trained operator both detection and localization by a quick look, 

automated detection and diagnosis is a challenge, especially if 

the collected data are noisy. Moreover, GWI does not directly 

provide information regarding the defect size.  

The paper presents the use of a CNN to automate the 

detection, localization and sizing of a defect. More specifically, 

to train the CNN, data are generated using a numerical finite 

element solver, then the theoretical performances of the process 

are quantified on numerical data. Finally, the model built by the 

CNN is used to conduct the inversion on real experimental data 

and excellent detection, localization and sizing are obtained.  
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1. INTRODUCTION 
Structural Health Monitoring (SHM) relies on the 

permanent integration of sensor to detect and quantify flaw. Once 

the sensors are integrated, this paradigm leads to a much easier 

inspection process in SHM compared to Non Destructive 

Testing, especially for recurrent and frequent inspections. 

However due to the volume of generated data, the diagnostic step 

must also be automated to provide a relevant information to an 

operator if an only if a defect of interest has been detected.  

One of the most promising approach in SHM is to use 

Guided Waves (GW), propagating over long distances and highly 

sensitive to all type of defects and more specifically Guided 

Wave Imaging. GWI relies on a sparse network of transducers 

integrated on the structure to generate a picture representing its 

health. Typically, GW are measured between every pair of 

transducer, assuming that the defect presence will somehow 

interfere with the wave packets. The information from every pair 

of sensor can then be combined using GWI, for example with 

triangulation-type algorithm such as Delay and Sum (DAS) [1].  

The main output of GWI being an image, it is natural to 

attempt to use tools specifically design to process images, to 

conduct the automated diagnostic. Toward this end, deep 

learning algorithms [2] and more specifically Convolutional 

Neural Network (CNN) [3] can be employed to carry out these 

tasks. CNN is a recent and major breakthrough in machine 

learning and allow advanced data classification and regression. 

It relies on the successive application of filters looking for 

specific patterns in the image, to update a prediction model. CNN 

require an extensive database to build an appropriate model.   

The use of CNN is enabled by the availability of reliable and 

efficient numerical simulation tools that can address a large set 

of realistic problems. The training base for the CNN is generated 

using the Spectral Finite Element (SFE) described in [4] for a set 

of predefined parameters. The configuration studied in this paper 

is a flat aluminum panel with a through-circular hole 

instrumented by eight piezoelectric transducers located in a 

circle around an area to monitor. The inspection is conducted by 

short bursts at 40 kHz and imaging is conducted with the DAS 

algorithm [1]. The varying parameters are the diameter of the 

hole along with its size.  

The automated diagnostic is first validated with numerical 

data (similar but not included in the training set) and validated 

experimentally through an experiment. 

 
2. DATABASE CREATION   

The GWI database generation is performed by employing a 

time domain SFE method [4] of the CIVA software. The main 

characteristic of the employed SFE method consists first in 

employing higher-order finite element aiming at reducing the 

number of elements and secondly in using a macro element pre-

meshing procedure adapted to the topology of the targeted 
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problem (e.g., flaw, shape, specimen geometry and 

characteristics, etc.). The main advantages of SFE method 

consist in reducing the RAM memory footprint of the simulation 

and CPU time. 

The studied configuration is the imaging of a flat aluminum 

panel instrumented by eight piezoelectric transducers located in 

a circle around an area to monitor. The defect is a through-

circular hole. For each GW emission, one simulation must be 

computed for every emitter; therefore, eight simulations must be 

conducted to obtain a GWI image. At 40 kHz, the complete 

simulation and processing time is of the order of 5 minutes on a 

regular desktop computer. A total of 918 images are generated 

for various flaw positions and sizes. Figure 1 is an example of 

one of the image included in the dataset.  

 

 

 
3. AUTOMATED DIAGNOSTIC USING CNN 

This section explains the deep learning strategy adopted in 

this paper. In this section, we first define the parametric model 

adopted then we provide an overview of the learning schema 

based on CNN employed. 

 

3.1 Description of the parametric model 
For sake of generality, let us define a parametric regression 

problem, involving the generation of a training set composed by 

a set of E examples of inputs I=[𝐢𝟏, … , 𝐢𝑬]𝑇  where the i-th the 

vector 𝐢𝒊 ∈ R𝑀𝑥×𝑀𝑦×1 and the targets T=[𝐭𝟏, … , 𝐭𝑬] 𝑇 where the 

i-th the vector 𝐭𝒊 ∈ R𝑃×1 where 𝑀𝑥 × 𝑀𝑦 and P represent the 

dimension of space of inputs and targets, respectively. Therefore, 

we define the training dataset as the ensemble of ordered couples 

 

𝐃trn = {(𝐢1, 𝐭1), … , (𝐢𝐸 , 𝐭𝐸)}.               (2) 
 

In view of classification and regression tasks, the matrix I 

represents the E examples and the dimension 𝑀𝑥 × 𝑀𝑦 is 

associated to the number of pixel (i.e., the measurement points) 

of the post-processed GW signal. Conversely, the targets matrix 

T consists in E rows and P columns representing the size and the 

position of the different flaws considered. In this work, the 

training set Dtrn has been generated via the CIVA software [5].  

 

3.2 Deep learning via convolutional neural network 
Very recently, CNN has shown to be very effective in a wide 

range of practical machine learning tasks ranging from text and 

image classification, object recognition and many others. 

Loosely speaking, the main feature of CNN consist in the 

capability to determine relevant features by properly combining 

inputs images accordingly to the chosen CNN architecture. The 

CNN are typically composed by multiple cascades of aggregated 

convolutional layers. For each aggregated convolutional layer, 

convolution, activation, average pooling and drop out operations 

are typically performed. Subsequently, aggregated layers are 

successively stacked and connected together. The convolution is 

performed by employing the convolutional operators called 

kernels. For each of the 𝑀𝑥 × 𝑀𝑦 pixels, the kernel outputs will 

have a high value if the convolution feature is present at the pixel 

position, otherwise the output is low. The kernel output can be 

computed as  

 

ℎ𝑖,𝑗 = ∑ ∑ 𝑤𝑘,𝑙𝑥𝑖+𝑘−1,𝑗+𝑙−1
𝑚
𝑖=1

𝑚
𝑘=1 ,               (3) 

 

where ℎ𝑖,𝑗 is the convolution output, 𝑤𝑘,𝑗 is the convolution 

kernel and 𝑥𝑖,𝑗  stands for the convolution layer input. 

Convolution operators are followed by the application of an 

activation function that generally is non-linear in order to 

describe complex data. In this work, we employed one of the 

most used and effective activation function for the CNN called 

Leaky Rectified Linear Unit (L-ReLU). The last operator applied 

in an aggregated convolutional layer is the pooling, which 

consists in a subsampling procedure aiming at decreasing the 

variance and reducing the computational complexity of the 

activation map. Since we aim to extract smooth features, we 

adopted the average pooling procedure. In the final version of 

the paper, more insight on the adopted CNN architecture will be 

provided. 

 

4.  RESULTS 
In this paper, CNN has been applied to both classification and 

regression tasks. In the studied problem, classification is 

intended as a discrimination task able to automatically determine 

whether a test image has been obtained from a flawed or flawless 

specimen. The accuracy of classification tasks has been assessed 

through Receiving Operation Characteristic (ROC) curves and 

confusion matrix tools considering a test set containing both 

flawed and flawless medium. Moreover, a dedicated noise model 

has been also included in our GW signals simulations to ensure 

non-trivial classification. This noise model has enabled to study 

the robustness of the developed approach in case of 

noisy/corrupted GWI samples. FIGURE 2 illustrates two 

example of the images contained in the database. The first image 

 
FIGURE 1: EXAMPLE OF DAS BASED POST 

PROCESSED SIGNALS. THE PINK CIRCLES REPRESENT 

THE TRANSDUCERS AND THE RED CIRCLE A 10 MM 

DIAMETER DEFECT. THE COLOR MAP REPRESENT 

THE RESULT OF THE DAS IMAGING. 
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is obtained from a simulation in a pristine state while the second 

is obtained from a simulation in a damaged state. To the naked 

eye, it is reasonably difficult to sort the image between pristine 

and flawed. Moreover, it is completely impossible to visually 

estimate the size of the defect. 

  
(a) (b) 

FIGURE 2: EXAMPLE OF THE IMAGES CONTAINED IN 

THE LEARNING DATABASE (a): FLAWLESS IMAGE AND 

(b): FLAWED IMAGE 
 

In FIGURE 3, the classification results based on CNN are 

provided. The classification was obtained by applying the 

classifier to 78 pristine images and 72 images containing 

damages. An excellent success rate is observed. To go further, 

the ROC curve is also displayed in FIGURE 3.  

 

 

In FIGURE 4, we show the preliminary results obtained by 

applying CNN in view of regression tasks aiming at retrieving 

the flaw radius. The red dots represent the inversion of defect 

size on the same test data as FIGURE 3. The green triangle 

represent the inversion of the defect size of experimental data 

acquire on the same configuration. 

 

 
FIGURE 4: REGRESSION RESULT ASSOCIATED TO THE 

FLAW RADIUS ESTIMATION. 
 

5.  CONCLUSION 
This work presented a deep learning framework for the 

automation of the classification and regression tasks based on 

GWI images. Both the classification and regression are 

successful on numerical data not included on the training set. The 

inversion model is also used to invert defect size from 

experimental data with success.  
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a) 

 
b) 

FIGURE 3: CLASSIFICATION RESULT ASSOCIATED TO 

THE FLAW DETACTION PROBLEM IN a) ARE SHOWED IN 

TERMS OF CONFUSION MATRIX AND IN b) IN TERMS OF 

ROC CURVE. 
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