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ABSTRACT 
Multidelity modeling representing the high-fidelity physics 

is a new technique introduced into nondestructive testing (NDT) 

systems. This work proposes a novel multifidelity modeling 

method combining polynomial chaos expansion and Cokriging. 

Specifically, the least angle regression method is used to select 

the most correlated orthogonal polynomial of the training data 

and subsequentially used bases as the trend functions of 

Cokriging model. This proposed polynomial chaos-based 

Cokriging (PC-Cokriging) is demonstrated for model-assisted 

probability of detection of NDT systems. The approach is 

demonstrated on an analytical test case, as well as on an 

ultrasonic testing case. The results show that PC-Cokriging is 

capable of reducing the training sample cost to around half of 

the training cost for the conventional Cokriging method.  

Keywords: nondestructive testing, multfidelity modeling, 

model-assisted probability of detection, polynomial chaos-based 

Cokriging. 

 

1. INTRODUCTION 
Model-assisted probability of detection (MAPOD) [1, 2] is 

the key metric for assessing the reliability of nondestructive 

testing (NDT) systems. MAPOD advances the originally 

proposed probability of detection (POD) by incorporating 

information from physics-based models and reducing the 

experimental budget.  

The core of MAPOD analysis is the propagation [3] of the 

variability within random input parameters into the model 

responses through Monte Carlo (MC)-based computational 

model evaluations. This MC-based variability propagation 

process typically requires a large amount of model evaluations, 

which can limit the application of MAPOD analysis when using 

accurate physics-based models. 

Metamodelin is the process of generating computationally 

efficient model and capturing the physics information in lieu of 
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time-consuming physics-based simulation models. Data-fit 

metamodels, including Kriging [4] and polynomial chaos 

expansions (PCE) [5], have been utilized for fast MAPOD 

analysis. Multifidelity metamodeling is also introduced for the 

first time into NDT systems by the author’s prior work [6]. The 

reduction on computational cost of MAPOD using 

metamodeling and multifidelity methods is promising. 

This work proposes a novel multifidelity metamodel, 

polynomial chaos-based Cokriging (PC-Cokriging), for further 

saving on training sample cost. The approach is compared 

against the current state-of-the-art metamodels using benchmark 

case studies. 

This paper is organized as follows. Section 2 describes the 

key methodologies used in this work. Section 3 demonstrates the 

proposed PC-Cokriging method on an analytical function and a 

MAPOD case. The paper ends with conclusion. 

 
2. METAMODELING METHODS 

This section provides detailed description of the state-of-

the-art metamodels and the proposed PC-Cokriging method. 

 

2.1 Polynomial Chaos Expansion 
PCE metamodel has a generalized formula as follows [7] 
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where X∈ℝm is a vector with random independent components, 

described by a probability density function fX, i is the index of 

ith polynomial term, Ψ is multivariate polynomial basis, and α is 

corresponding coefficient of basis function, P has the following 

formula 
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where p is the required order of PCE, and n is the total number 

of random variables. 

 

2.2 Kriging Interpolation 
Kriging interpolation [4] (also known as Gaussian random 

process) has the generalized formula as follows 
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where X∈ℝm, f(X) = [f0(X), …, fp-1(X)]T  ℝp is defined with a 

set of the regression basis functions,  = [ꞵ0(X), …, ꞵp-1(X)]T  

ℝp denotes the vector of the corresponding coefficients, and Z(x) 

denotes a stationary random process with zero mean, variance 

and nonzero covariance. In this work, Gaussian exponential 

correlation function is adopted, thus the nonzero covariance 
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where θ = [θ1, θ2, …, θm]T, denote the vectors of unknown hyper 

model parameters to be tuned. Further derivation gives the 

Kriging predictor �̂�(𝐗) for any untried X as follows 
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where ytr is the observations on training data. 

 

2.3 Cokriging 
Cokriging [4] aims at representing high-fidelity (HF) 

physics information by fusing HF and low-fidelity (LF) 

information. This work focuses on two layers of models only. 

The general process of constructing Cokriging is summarized as 

two main steps: (1) construct a Kriging metamodel on the LF 

model as described in Section 2.2, (2) construct another Kriging 

metamodel on the difference between HF and LF model 
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where ρ is an unknown scale parameter, MLF and MHF are LF and 

HF models, respectively. Step 2 also follows the same process as 

described in Section 2.2 except that one more unknown 

parameter (ρ) needs to be considered. 

With the two steps ready, the Cokriging predictor follows 

the same format with Eqn. (6) but all the matrices and terms are 

in the complex combination of LF and HF training points. 

Further detail is provided in Forrester et al. [4]. 

 

2.4 Polynomial Chaos-Based Cokriging 
The proposed PC-Cokriging multifidelity metamodel is 

constructed based the PCE and Cokriging. In particular, PC-

Cokriging uses PCE as the trend function in each layer of 

Kriging interpolation metamodel. The general process is 

summarized as follows: 

(1) use the orthogonal polynomial bases terms as trend 

function terms of Kriging interpolation, 

(2) construct the Kriging metamodel based on Step 1, 

(3) generate the second Kriging metamodel following the 

same process as Steps 1 and 2 but on the difference, 

(4) once all unknown parameters are determined, predictor 

is set up in the same way as conventional Cokriging. 

 

3. NUMERICAL EXAMPLES 
This section demonstrates the proposed PC-Cokriging 

multifidelity metamodeling method on Currin function and 

MAPOD analysis of an ultrasonic benchmark problem. 

 

3.1 Analytical Function 
The LF and HF Currin functions considered in this work are 
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where x1 and x2 follow U(0, 1). 

Metamodeling results are given in Fig. 1. The root mean 

squared error (RMSE) is targeted at 1% of standard deviation of 

testing points (1%σtesting). PC-Cokriging needs only 50 training 

points, while Cokriging and PCE both need 130 and Kriging 

needs over 200. 

 
FIGURE 1: METAMODELING SETUP. 

 

3.2 Ultrasonic Benchmark Case 
The setup of the ultrasonic benchmark case is given in Fig. 

2. In this work, the probe angle, θ, the probe F-number, F, and 

the probe x location, x, are considered as uncertain, with normal 
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N(0, 1) deg, uniform U(8, 10) and uniform U(0, 1) mm 

distributions, respectively. 

Comparison plots of root mean squared error is shown in 

Fig. 3. To reach 1%σtesting, PC-Cokriging needs 20 HF training 

points, while Cokriging needs 64, PCE needs 120, and Kriging 

needs 800. The “ahat vs. a” plots and POD curves are generated 

and shown in Figs. 4 and 5. The PC-Cokriging results match well 

with HF plots, while an obvious difference between HF and LF 

results can be observed. 

 

 
FIGURE 2: SETUP OF ULTRASONIC BENCHMARK CASE. 

 
FIGURE 3: METAMODELING SETUP FOR UT CASE. 

 

 
FIGURE 4: “ahat vs. a” LOG-LOG LINEAR REGRESSION. 

 
FIGURE 5: POD CURVES FOR THE UT CASE. 

 

4.  CONCLUSION 
This work introduces the PC-Cokriging multifidelity 

metamodeling method for MAPOD analysis of NDT systems. In 

both the analytical function and NDT benchmark cases, the PC-

Cokriging outperforms the current state-of-the-art methods. The 

full paper will present several more NDT cases. 
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