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ABSTRACT 

Long pipes and circular bars are common structural 

elements. The ability to conduct nondestructive evaluation of 

such structural elements is thus a critical in maintaining the safe 

operation of the structures containing such elements. However, 

such pipes and bars are typically very long, and access to the 

entire pipe/bar is usually not available. Thus, nondestructive 

evaluation of local damage along the length direction is a major 

challenge. To overcome this difficulty, we propose in this paper 

a method based on the one-way mixing of guided waves to detect 

the localized damage in pipes/bars. In the experiment, a 

torsional mode is first generated from one end of a solid bar. 

After a time-delay, the first symmetric longitudinal mode is also 

generated from the same end of the bar. Since the longitudinal 

mode propagates faster, it will catch up with the torsional mode 

at a location that can be easily calculated based on the group 

velocities of these two modes and the time-delay between them. 

When the two primary modes mix, their nonlinear generates a 

secondary torsional mode, which propagates backwards towards 

the end of the bar where the two primary waves were generated. 

This mixed shear wave contains the acoustic nonlinearity 

parameter of the material in the mixing zone. Therefore, by 

measuring this mixed shear wave, microstructural damage 

within the mixing zone can be obtained. Thus, this technique is 

capable of nondestructively evaluating the material damage 

along the bar far away from the end where the interrogation 

signals are injected into the bar. 

NOMENCLATURE 

1k         wave vector of the primary wave one 

2k       wave vector of the primary wave two 

3k       wave vector of difference or sum harmonics 

1        angular frequencies of primary wave one 
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2        angular frequencies of primary wave two 

1

L

pC      phase velocities of primary longitudinal waves 

2

T

pC      phase velocities of primary torsional waves 

3

T

pC      phase velocities of difference harmonics  

 

1. INTRODUCTION 

Dislocations, precipitates, micro-voids or micro-cracks may 

lead to the initiation of macro-defects, and finally result in the 

catastrophic failure of the structure [1]. Therefore, it is vitally 

important to detect and localize the micro-damage at an early 

stage. Nonlinear ultrasound has shown high sensitivity to the 

microstructural changes as compared with traditional linear 

ultrasound. Considerable experimental measurements have been 

conducted using the second harmonic of longitudinal waves to 

detect plastic deformation [2], fatigue damage [3], and 

degradation of adhesive joints [4]. The method of second 

harmonic generation has also been extended to waveguides of 

constant cross-section (i.e. plates [5], rods [6], and rails [7]). For 

cumulative second harmonic generation, phase velocity 

matching and non-zero power flow criteria were considered as 

the necessary conditions for the cumulative second-harmonic 

generation [8]. If pulses of finite length are used, group velocity 

matching is also required [9]. However, the conventional second 

harmonic technique can only measure the average of the acoustic 

nonlinearity parameters between transmitters and receivers. 

Thus, it is incapable of characterizing local damage along the 

waveguide. Further, the method is also vulnerable to extraneous 

nonlinearities unrelated to material damage such as nonlinearity 

in the measurement system itself.  

Wave mixing offers an alternative method to overcome these 

shortcomings. By mixing two primary waves of appropriate 

polarizations and frequencies, a secondary wave might be 

generated that is associated with the acoustic nonlinearity 
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parameter for the material within the zone where the two primary 

wave mix. Mixing of bulk waves have been used to characterize 

plasticity [10], corrosions [11] and micro-cracks [12]. 

Comparing with the bulk waves, the nonlinear mixing of guided 

waves is considerably more complex due to the dispersive and 

multi-mode nature of guided waves. For plate-like waveguides, 

the generation of cumulative second-order harmonic has been 

studied extensively, e.g. [13].  

Mixing of guided waves in circular cross-section bars has 

also been studied for detecting and localizing microstructural 

changes. The self- and mutual interactions of guided waves in 

cylinders are theoretically studied by Lima and Hamilton [14], 

and Liu et al [15]. Finite element simulations are also conducted 

to investigate the generation of cumulative second harmonics in 

cylinders [6, 15]. However, no experimental measurements have 

been carried out on the nonlinear mixing of torsional and 

longitudinal modes in circular cross-section bars, which is the 

focus of the present study. Specifically, this paper presents an 

experimental study on one-wave wave mixing of guided waves 

in circular cross-section bars. The aim is to investigate the 

feasibility of non-destructive detection and localization of micro-

damages using the one-way mixing of guided waves in circular 

cross-section bars. 

 
2. MATERIALS AND METHODS 

Circular cross-section bars or cylinders will be used in the 

measurements. The bars are made of Al6061-T6 aluminum alloy. 

The materials properties are LC
   6445.1m/s and TC

   

3094.9m/s. These were measured experimentally by the authors. 

The study consists of the following steps: 

1. Obtain the dispersion curves 

2. Select suitable mode triplets for the measurements 

3. Generate torsional mode at one end of the bar 

4. Generate longitudinal modes at one end of the bar 

5. Generate both torsional and longitudinal modes at the 

same end of the bar 

6. Receive torsional wave at the same end of the bar where 

the two primary modes are generated 

 

3. PRELIMINARY RESULTS 

 

3.1 Selection of the suitable mode triplets 

Based on the theoretical analysis, the nonlinear mixing of 

torsional and longitudinal waves can lead to the generation of 

cumulative second order harmonics when the phase matching 

and non-zero power flux criteria are satisfied. Specifically, 

primary torsional modes T(0,1) can be generated from the 

interaction of the longitudinal mode L(0,n) and the torsional 

mode T(0,1), where n denotes the mode order of the Longitudinal 

wave. Further, the wave vectors of these three waves must 

satisfy, 

1 2 3k k k+ =                                      (1) 

where 1k  and 2k  present the wave vectors of primary waves, 

3k  is the wave vector of the difference or sum frequencies. For 

the one-way mixing of guided waves in circular cross-section 

bars, the relationship between the frequencies and phase 

velocities can be written as, 
 

1 2 2 1

1 2 3

L T T

p p pC C C

   −
− =                        (2) 

where ω1 and ω2 are the angular frequencies of primary waves, 

1

L

pC , 2

T

pC  and 3

T

pC  present the phase velocities of primary 

longitudinal wave, primary torsional wave and mixed secondary 

wave, respectively. We note that 2

T

pC   equals to 3

T

pC   since 

the torsional mode T(0,1) is non-dispersive. The crossing points 

in FIGURE 1 present the selected mode triplets on the 

dispersion curve of a 6061-T6 aluminum alloy cylinder with the 

diameter of 6mm. The L(0,1) mode at f1 292KHz and T(0,1) at 

f2 250KHz are chosen as the primary waves because single 

L(0,1) and T(0,1) modes at relative low frequencies can be easily 

excited. 

 

 
FIGURE 1: THE SELECTED MODE TRIPLETS ON THE 

DISPERSION CURVE OF A 6061-T6 ALUMINUM ALLOY 

CYLINDER WITH THE DIAMETER OF 6MM 

 
3.2 Experimental excitation of the torsional waves 

A transducer consisting of two thickness-poled d15 

piezoelectric half-rings is used as the transducer to generate the 

primary torsional mode and as the receiver to record the mixed 

secondary torsional mode. The transducer is glued onto the left 

end of the bar. To check the integrity of the transducer and the 

measurement system, a 20-cycle tone burst at 250KHz was 

generated by a high-power gated amplifier and then fed into the 

transducers. The generated pulse propagated towards the right 

end of the bar, was then reflected back towards the left end of the 

bar. The reflected signal is then recorded by the same torsional 



 3 © 2019 by ASME 

wave transducer on the left end of the bar. FIGURE 2 shows 

typical time-domain signals received by the torsional wave 

transducer. The multiple packets are due to the multiple 

reflections of the torsional mode from the two ends of the bar, 

from which, the shear wave velocity of the material is calculated 

as 3094.7m/s. 

 
FIGURE 2: A TYPICAL TIME-DOMAIN SIGANLS 

RECEIVED BY THE TORSIONAL WAVE TRANSDUCERS 

 

 

4.  CONCLUSION 

Preliminary measurements have been conducted for 

developing a one-way mixing technique in a circular cross-

section bar. Specifically, a single torsional mode has been 

successfully generated by using a torsional wave transducer 

consisting of two thickness-poled piezoelectric half-rings.  
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